# **Activation and Reaction Volumes in Solution**

T. ASANO and W. J. LE NOBLE\*

Departments of Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu Oita 870-11, Japan, and State University of New York, Stony Brook, New York 11794

Received March 20, 1978

#### **Contents**

| ı.   | Introduction                                                    | 407 |
|------|-----------------------------------------------------------------|-----|
|      | A. Scope                                                        | 407 |
|      | B. The Basic Concepts                                           | 407 |
|      | C. Notes Concerning Apparatus                                   | 409 |
| II.  | Activation Volumes of Organic Reactions                         | 439 |
|      | A. The Data in Tabular Form                                     | 439 |
|      | B. Racemization and Related Reactions                           | 439 |
|      | C. Homolysis and Related Reactions                              | 439 |
|      | D. Bond Forming Reactions and Cycloadditions of Neutral Species | 440 |
|      | E. Solvolysis                                                   | 441 |
|      | F. Bimolecular Nucleophilic Substitutions                       | 443 |
|      | G. Carbanion Reactions                                          | 443 |
|      | H. Acid-Catalyzed Reactions                                     | 444 |
|      | I. Miscellaneous Organic Reactions                              | 445 |
| III. | Activation Volume Differences                                   | 446 |
|      | A. The Data in Tabular Form                                     | 446 |
|      | B. Competing Radical Reactions                                  | 446 |
|      | C Competing Cycloadditions                                      | 446 |
|      | D. Miscellaneous Organic Reactions                              | 446 |
| IV.  | Activation Volumes of Inorganic Reactions                       | 457 |
|      | A. The Data in Tabular Form                                     | 457 |
|      | B. Isomerizations                                               | 462 |
|      | C. Redox Reactions                                              | 462 |
|      | D. Solvent Exchange                                             | 462 |
|      | E. Other Substitution Reactions                                 | 462 |
| ٧.   | Reaction Volumes                                                | 463 |
|      | A. The Data in Tabular Form                                     | 463 |
|      | B. Inorganic Acids: Ionization Volumes                          | 463 |
|      | C. Carboxylic Acids: Ionization Volumes                         | 463 |
|      | D. Phenois                                                      | 463 |
|      | E. Amines                                                       | 463 |
|      | F. Ion-Pair Equilibria and Inorganic Reaction Volumes           | 478 |
| VI.  | Photochemistry and Related Processes                            | 478 |
|      | Biological and Biochemical Processes                            | 480 |
|      | Appendix                                                        | 482 |
|      | References and Notes                                            | 485 |
|      |                                                                 |     |

## I. Introduction

### A. Scope

One of the dilemma's facing the review writer in a field which has been reviewed before is that comprehensiveness forces those readers who saw the earlier article to leaf and scan to find the new things, whereas a mere updating compels those who did not see the initial writing to look it up in order to understand the additions. The problem is especially acute if the same author is involved in both stages, since he is apt to feel that his first effort was so well done and is so widely known and remembered that the mere referral to it will suffice.

The earlier comprehensive review was concerned, to all in-

tents and purposes, with activation volumes only; it appeared in 1967¹ and was presumed to be complete through 1966. A thorough review on ionization volumes was published by Hamann in 1974.² Our objective here has been to present as complete as possible a listing of both types of volume difference, between those dates and the end of 1976; some 1977 data have become available as well, and these were incorporated also. We realize that the readability of our paper is somewhat limited by the choice of these time slots, but the information available is now so great that total comprehensiveness is not really possible any longer. To cope with this problem to some degree, we have added a somewhat starkly written introduction.

The organization of the data differs a little from that in ref 1. In that paper, the data were organized along strictly mechanistic lines: homolyses, ionizations, bond deformation reactions, bond formation—with and without concomitant formation of ions—and so on. The thrust of the paper was to convince readers that an excellent correlation exists between the activation volume and the main mechanistic features. However, since this relation now seems to be widely accepted and used, there is no longer any need for such an approach; accordingly the present paper is organized more along product lines. In other words, to mention one example, cycloadditions appear together whether they are concerted or not, and if the latter is the case, whether they involve diradicals or zwitterions. In the text, these nuances are pointed out, of course.

Beside the comprehensive data tables quoted above, several reviews have appeared since 1966 which are more limited in scope (though perhaps also more critical); among these there are accounts dealing with physical organic chemistry, 3-8 physical properties, 9 polymerization, 10 cycloadditions, 11 radical reactions, 12 inorganic processes, 13,14 and photoprocesses in the solid phase. 15 Those who consider becoming actively involved in the high-pressure business should also consult the forthcoming Conference Proceedings of the NATO Advanced Study Institute organized by Professor H. Kelm of the University of Frankfurt a.M. in Corfu in the fall of 1977; they include lectures on the basics of all types of spectroscopy of compressed substances, as well as the behavior of chemical systems at or away from equilibrium.

### **B.** The Basic Concepts

In any reaction in solution:

reactants (R) 
$$\rightarrow$$
 transition state ( $\ddagger$ )  $\rightarrow$  products (P)

for which the rate law is known, one can in principle measure the activation volume  $\Delta \textit{V}^{\mp},$  defined by

$$\Delta V^{\pm} = V^{\pm} - V_{\mathsf{R}} \tag{1}$$

The reaction volume,  $\Delta V$ , given by

$$\Delta V = V_{\mathsf{P}} - V_{\mathsf{R}} \tag{2}$$

© 1978 American Chemical Society

407

0009-2665/78/0778-0407\$05.00/0

can be determined regardless of the rate law.

We shall deal here exclusively with solutions and not with pure liquids; it should be understood that all volumes referred to in this review are partial volumes in the solvents and under the conditions of interest. For convenience, we have therefore omitted the bar over the V symbol which is customarily used to indicate partiality. 16

The volume changes defined above can be determined by making use of the fundamental thermodynamic relation

$$\partial G/\partial p = V \tag{3}$$

Activation volumes are derived from the equation of absolute

$$\Delta G^{\ddagger} = -RT \ln k N \dot{h} / RT \tag{4}$$

which gives

$$\Delta V^{\pm} = -RT \partial \ln k / \partial p \tag{5}$$

and reaction volumes from eq 6:

$$\Delta G = -RT \ln K \tag{6}$$

which yields

$$\Delta G = -RT\partial \ln K/\partial p \tag{7}$$

The activation volume can be measured in only one way, i.e., by means of the effect of hydrostatic pressure on the rate constant and subsequent application of eq 5; the reaction volume can be determined by either measuring the effect of pressure on the equilibrium constant and applying eq 7, by dilatometry, or by measuring the partial volumes of products and reactants individually, and then properly combining them. It may be noted from eq 1 that knowledge of both the activation volume and the partial volumes of the reactants yields the partial volume of the transition state alone. The volume is therefore one of the very few properties of the transition state that can be accurately and easily determined (the enthalpy of transfer 17 might be considered another). The partial volume of stable substances can be calculated by extrapolating the apparent molar volume from the densities of dilute solutions to infinite dilution:16

$$\phi_{\rm v} = \frac{M}{d} - \frac{d - d_0}{d_0} \frac{1000}{C}$$

It may be noted here in passing that eq 5 was already known to van't Hoff, 18 and eq 7 to Planck; 19 however, the modern interpretation of  $\Delta \textit{V}^{\ddagger}$  did not begin until the advent of Eyring's theory of absolute rates. Pressure effects on rate constants before 1935 were always listed in tables and never combined in terms of a single result until then.

The question arises: why the stress on dilute solutions in determining volume changes? Experience shows that such changes are rarely much larger than 30 cm<sup>3</sup>/mol either way, and inspection of eq 5 shows that, accordingly, k will change by only a fewfold per kilobar of pressure. If we were to attempt to measure the effect of such pressures on gas-phase reactions, we would find that the resulting changes in rate would be so much greater than those of the rate constant that it would probably be impossible in most cases to extract the latter from the overall effect. We also avoid (initially) pure liquids and even concentrated solutions because unless  $\Delta V = 0$ , changes in total volume and hence in pressure would occur during the reaction. Even if one constructed a piezostat that automatically and continuously adjusted the pressure, there would still be the problem of a gradual change of medium and, accordingly, of the activity of the reactant(s); the dissipation of heat evolved would present a much greater difficulty, and so on. For these and other reasons piezochemists work with dilute solutions, the more dilute the better. It should be stressed that high dilution need not be an important requirement in synthetic applications, however.

Guggenheim<sup>20</sup> and especially Hamann<sup>2</sup> have pointed out clearly and repeatedly that the application of eq 3 and 4 requires the use of pressure-independent concentration units, such as molal units, mole fractions, or moles per liter at one atmosphere. and so on. These warnings are repeated here because the literature continues to produce examples of "corrections" made to allow for the apparent fact that compressed solutions have higher concentrations than those at atmospheric pressure. Such corrections would be in order only if the solutions were prepared (and hence if the concentrations were initially known only) at the high pressures at which they are used; one should then have to correct these numbers so as to produce the corresponding values at atmospheric pressure. In fact, this of course never occurs. The only situation calling for a correction and likely to arise now and then is a reaction other than first order in which spectroscopic analysis is carried out with a cell of constant length and hence pressure-dependent average cross section, since the number of molecules in the light beam is increased

A continuously recurring problem with eq 5 and 7 is that the theoretical relations between k and p, and K and p, are not known, and hence that the slopes must be obtained in an empirical manner before  $\Delta V^{\dagger}$  and  $\Delta V$  can be calculated. These theoretical relations are certainly not linear ones, and although linear behavior is sometimes indicated over modest pressure ranges, the fact is that  $\Delta V^{\ddagger}$  and  $\Delta V$  are always pressure dependent. We will briefly discuss these related problems; first, how to get the slopes.

Various methods have been proposed and used. Perhaps the most realistic method, in view of the empirical nature of the objective, is the graphical method. 16 The alternative is fitting by least squares<sup>16</sup> to some equation having roughly the correct characteristics for the data at hand. These data may portray either positive or negative slope ( $\Delta V^{\ddagger}$  and  $\Delta V$  may be either negative or positive, respectively), but they always tend to level off at high pressure; i.e.,  $\Delta V^{\ddagger}$  and  $\Delta V$  tend to zero at high pressures. There are, of course, many equations that mimic this behavior, but in order to be suitable for use, the number of adjustable parameters should be minimal. Among all the equations proposed and used, perhaps the most popular is the parabolic

$$\ln k = a + bp + cp^2 \tag{8}$$

so that then, at p = 0

$$\Delta V^{\ddagger} = -bRT \tag{9}$$

The advantage of eq 8 is the simplicity of the arithmetic; the weak point is that its shape (with a maximum or minimum) is not realistic, and especially if data over a wide pressure range are available, the fit may be poor and the absolute magnitude of  $\Delta V^{\pm}$ or  $\Delta V$  is likely to be underestimated.

There are also a number of semiempirical equations that have been proposed; these have in the main been based on the Tait equation

$$\frac{V_0 - V_p}{V_0} = C \log \left( 1 + \frac{p}{B} \right) \tag{10}$$

which almost perfectly describes the behavior of water over modest pressure ranges and for which there is some theoretical justification.<sup>21</sup> The assumption is that the Tait equation is also valid for the components of the solution at hand, and for the transition state as well. Earlier debates about this question have been quoted elsewhere,1 and it has remained of interest;22,23 however, the authors agree with Whalley24 and Hyne25 that with our lack of theoretical understanding and with the precision available, graphical methods and/or eq 9 are the best methods available. One alternative that has not been considered is eq 11, which has the same number of parameters as (8) but is sufficiently more flexible that it may avoid the underestimation of  $\Delta V^{\pm}$  at low pressures that so uniformly results from the use of eg 8. Equation 9 would not be changed, except for the value of

$$\ln k = a + bp + cp^3 \tag{11}$$

The second and related point is that since  $\Delta V^{\mp}$  and  $\Delta V$  are pressure dependent, we need to agree on the pressure to which 'the'' activation and reaction volumes shall refer. The choice has universally been that of zero pressure, and it is understood that throughout this paper  $\Delta V^{\ddagger}$  and  $\Delta V$  are intended to mean  $\Delta V_0^{\dagger}$  and  $\Delta V_0$ , which differ by immeasurably small amounts from the values at atmospheric pressure. The reasons for this are that these volumes can then be correlated with all other known facts about the reaction or equilibrium, which also virtually always are available for atmospheric pressure only, and furthermore, that reaction volumes derived from partial volume measurements are likewise known only at atmospheric pressure. There is unfortunately one small problem with this convention, which is that the pressure range ends at zero, and hence that the error in estimating  $\Delta V^{\ddagger}$  or  $\Delta V$  from high-pressure data is maximized. From this point of view, data at  $\frac{1}{2}$  or 1 kbar ( $\Delta V_{1/2}^{\ddagger}$ ,  $\Delta V_1$ , etc.) might have been preferable, but it is too late for that.

The curvature in the  $\log V$  vs. p plots, of course, provides additional information, and this may be relatable to the compressibility of the transition state; perhaps Gay has made the most progress in this direction.<sup>26</sup> Small temperature effects on the activation volume have been found by numerous workers. most notably by Hyne.<sup>27</sup> That these small effects are measurable to reasonable accuracy was demonstrated by Kelm,28 who found that the Menshutkin reaction of triethylamine with ethyl iodide in acetone in the range of 0-3 kbars and 20-50 °C closely obeyed the Maxwell relation

$$\left(\frac{\partial \Delta V^{\pm}}{\partial T}\right)_{p} = -\left(\frac{\partial \Delta S^{\pm}}{\partial p}\right)_{T} \tag{12}$$

El'yanov<sup>29–33</sup> has treated the problem of calculating  $\Delta V^{\pm}$  and  $\Delta V$  if only high-pressure data are available. His analysis is based on the reasonable assumption that similar reactions will have the same curvature.

As noted before,  $^{1}$  a minimum or inflection point in the ln k vs. p curve is indicative of competing pathways with different activation volumes. An example was recently described by Tiltscher,34 who found that the Friedel-Crafts propylation of benzene with propene, catalyzed with ferric chloride, in nitrobenzene solution exhibited a minimum. The competing mechanisms have not yet been sorted out.

Still another theoretical point of interest, first proposed by Walling, 35 is the pressure-induced transition state progression along the reaction coordinate. A possible example has been claimed by Fujii,36 who deduced from the pressure coefficient of the rate constant of the HCI catalyzed Orton rearrangement of N-chloroacetanilide that the CI-CI distance in the transition state increases from 2.5 to 3.5 Å between 0 and 2 kbars, but this conclusion has been disputed.<sup>37</sup> Another possible case has been described by Libby,38 who found that solid phase dimerization reactions of anthracene at 58 kbars proceed more rapidly at low temperature than at high, and who refers to the "negative activation enthalpy" of the reactions. These conversions, however, require initiation by means of high-energy irradiation; the mechanisms-indeed, the products-have not been established with certainty, and it is not clear that Libby's conclusion is in-

In the earlier review, 1 mention was made of the possibility of making use of the internal pressure<sup>39</sup> of liquids to estimate  $\Delta V^{\pm}$ of reactions occurring in them (p 230 ff). This suggestion, in one form or another, has been revived by several authors;40-44 however, the data so generated have not been included here.

TABLE I. Factors in the Estimation of  $\Delta V_0^*$ 

| Mechanistic feature  | Contribution, cm <sup>3</sup> /mol |
|----------------------|------------------------------------|
| Bond cleavage        | +10                                |
| Bond deformation     | ~0                                 |
| Bond formation       | <b>-10</b>                         |
| Displacement         | -5                                 |
| Diffusion control    | >+20                               |
| Cyclization          | ~0                                 |
| Ionization           | -20                                |
| Steric hindrance     | (-)                                |
| Neutralization       | +20                                |
| Charge dispersal     | +5                                 |
| Charge concentration | <u>-5</u>                          |

As yet, there are so few demonstrated examples of activation volumes determined in both ways that one can be confident of the solvent-variation method; furthermore, it is rather questionable on many grounds whether reactant molecules are indeed not subject to influences from the solvent host other than a pressure equal to its internal pressure. Neuman<sup>45</sup> has justly criticized such methods for media other than hydrocarbons. Our own attitude1 is that the assumption is justified only if the reaction can be made to take place in the gas phase, and then at a rate predictable from the known activation volume and the internal pressure of the solvent in which  $\Delta V^{\pm}$  was measured.

It is desirable to mention here two important strides forward in the determination of partial volumes. One of these is the tuning fork pycnometer (densimeter),46 in which the density of the solution of interest is deduced from the natural frequency of a tuning fork filled with the solution. This allows much more rapid and more sensitive determination of densities than conventional pycnometers. The second innovation is the determination of the partial volume of individual ions from ionic vibration potential measurements;47 up till then, these volumes could only be measured for pairs of ions of opposite charge, or as differences of ions of like charge. Useful reviews of partial volumes are available for organic compounds in water<sup>48</sup> and for electrolytes:49 references to and a discussion of the volume of mixing have been provided by Brower.50

Table I appeared also in ref 1; it is a useful summary of all known data. In applying it, one should be aware that these numbers are no more than averages, and that especially the entries involving ions are strongly solvent dependent.

## C. Notes Concerning Apparatus

Important progress has been made in recent years in the marriage of high-pressure equipment with conventional kinetic techniques so that reactions of much greater speed can now be studied under pressure. Among these innovations may be mentioned Eckert's high-pressure mixing apparatus,51 which allows the mixing of reagents at will after the heat of compression has dissipated, and hence the study of reactions which are over in a matter of minutes; it should be easily extendable to high-pressure quenching as well. Other steps in this direction are provided by Brower's high-pressure p-jump design,52 the high-pressure T-jump apparatus described by Grieger,53 Hasinoff, 54 and Jost, 54 the NMR high-pressure probe by Yamada, 55 Jonas,56 and by Merbach,56 the ESR probe of Schaafsma,57 Heremans' high-pressure stopped-flow apparatus,<sup>58</sup> and Caldin's flash photolysis equipment. 59 Moriyoshi has described a new continuous technique of following high-pressure reactions based on the pressure drop;60 the topic of spectroscopy at high pressure has been reviewed by Ferraro and Basile.61

The most recent stage in the never-ending cycle of revisions and renamings of units is recorded in the opening pages of the Australian Journal of Chemistry of 1977;62 the pressure unit is now the pascal, defined as  $1 \text{ N/m}^2$  (N = newton). In the past

TABLE II. Activation Volumes for Reactions of Organic Compounds  $^{\it a}$ 

| N <sub>O</sub> . | Reaction                                                                                                                                                 | Solvent                                              | 7, °C                      | P, kbars | No. of k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref          | Remarks                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------|---------------|-------------------------------------|--------------|--------------------------------------|
| - N m -          | <i>t-</i> BuS'(Me)Et —> racemic mixture<br>PhCOCH <sub>2</sub> S'(Me)Et —→ racemic mixture                                                               | H <sub>2</sub> O<br>H <sub>2</sub> O<br>MeOH<br>Froh | 40<br>60.5<br>60.5<br>60.5 |          |               | +6.4<br>0<br>0                      | 63<br>63     |                                      |
| ı ıo             | PhSO—(○) → racemic mixture                                                                                                                               | PhMe                                                 | 192                        |          |               | -5<br>-                             | 8 8          |                                      |
| 9                | SO—SO— racemic mixture                                                                                                                                   | PhMe                                                 | 187                        |          |               | 0                                   | 63           |                                      |
| 7                | PhCH <sub>2</sub> SO — racemic mixture                                                                                                                   | PhMe                                                 | 141.3                      |          |               | +26                                 | 63           |                                      |
| œ                | CH <sub>2</sub> ==CHCH <sub>2</sub> SO—{                                                                                                                 | PhMe                                                 | 43                         |          |               | +1.0                                | 63           |                                      |
| თ                | ноой                                                                                                                                                     | Етон                                                 | 09                         |          |               | +1.4                                | 63           |                                      |
| 10               | No,                                                                                                                                                      | РћМе                                                 | 06                         | 6.6      | 13            | -283                                | 64           | At >3 kbars, $\Delta V^* \simeq -1s$ |
| <del>-</del>     | NO <sub>2</sub> Accomic mixture                                                                                                                          | РhМе                                                 | 06                         | 9.1      | 5             | -32                                 | 64           | At >3 kbars, $\Delta V^* \simeq -6$  |
| 12               | $MeCO \xrightarrow{\mathcal{C}} N$ (rotation)                                                                                                            | <b>t</b> -                                           | 80                         | 2.0      | ဇ             | +10.3                               | 65           |                                      |
| 13               |                                                                                                                                                          | q                                                    | 09-                        | 2.0      | က             | -1.9                                | 65           |                                      |
| <del>4</del>     | PhCH <sub>2</sub> CO <sub>3</sub> -t-Bu → PhCH <sub>2</sub> · + CO <sub>2</sub> · + t-BuO·                                                               | <i>i</i> -PrPh                                       | 9.62                       | 4.1      | က             | +1.0                                | 99           |                                      |
| 5<br>16          |                                                                                                                                                          | PhCi<br>i-PrPh                                       | 79.6<br>79.6               | 6.1      | ю <b>4</b>    | +1.5<br>+0.5,                       | 66<br>67, 68 | ∆V* increases                        |
| 4                |                                                                                                                                                          | 7                                                    | 79.6                       | 4        | ď             | +0.4°                               | 67           | with pressure                        |
| 18               | PhCO <sub>3</sub> -t-Bu → PhCOO· + t-BuO·                                                                                                                | iPrPh                                                | 79.6                       | 1.7      | 2 0           | + 10.0,                             | 67           |                                      |
| 19               |                                                                                                                                                          | PhCI                                                 | 9.62                       | 4.1      | 7             | + 12.5,<br>+ 12.9                   | 29           |                                      |
| 20               | 0                                                                                                                                                        | i-PrPh                                               | 9.62                       | 4.1      | က             | +3.9                                | 62, 69       |                                      |
| 21               | [f-BuO·N <sub>2</sub> O-f-Bu] <sub>cage</sub> → 2r-BuOH                                                                                                  | C <sub>8</sub> H <sub>18</sub>                       | 45                         | 4.1      | 9             | +13.84                              | 20           |                                      |
| 22               | $f\text{-BuON}=NO-f\text{-Bu} \longrightarrow 2f\text{-BuO} + N_{2}$ C(                                                                                  | C <sub>8</sub> H <sub>18</sub>                       | 55.1                       | 6.3      | 4             | +4.3                                | 71           |                                      |
| 23               | $\left\langle \bigcirc \right\rangle - CH_2CO_3 \cdot t \cdot Bu \longrightarrow \left\langle \bigcirc \right\rangle - CH_2 \cdot + CO_2 + t \cdot BuO.$ | <i>i</i> -PrPh                                       | 79.6                       | 6.1      | 4             | +1.6°                               | 89           | $\Delta V^*$ increases with pressure |

| ntinued) |
|----------|
| હ        |
| =        |
| 쁘        |
| 9        |
|          |

| TABLE | TABLE II (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |         |           |               |                 |              |                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|-----------|---------------|-----------------|--------------|----------------------------|
| Š.    | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Solvent                             | T, °C   | .P, kbars | No. of k data | ΔV*,<br>cm³/mol | Ref          | Remarks                    |
| 48    | OPPH —— disappearance of DPPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PhMe                                | 40      | -         | 6             | +10.7           | 6/           |                            |
| 49    | ARSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c-C <sub>6</sub> H <sub>11</sub> Me | 40      | -         | 10            | +17.2           | 6/           |                            |
| 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $c$ - $C_6$ H <sub>12</sub>         | 40      | 0.7       | œ             | +34.9           | 79           |                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |         |           |               |                 |              |                            |
| 51    | \\<br>\1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Neat                                | 176     | 12        | 2             | +12.3           | 80           |                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |         |           |               |                 |              |                            |
|       | OCSSMe + COS + MeSH (both $\Delta^{2-}$ and $\Delta^{3-}$ -cholestene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |         |           |               |                 |              |                            |
| 52    | Me <sub>6</sub> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CDCl3                               | 06      | 10.1      | 12            | -34.6           | 18           | At 3 kbars,                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |         |           |               |                 |              | cm³/mol                    |
| 23    | - ZMe <sub>2</sub> CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PhMe                                | 09      | -         | 2             | 6+              | 82           |                            |
| 54    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PhCI                                | 09      | -         | 5             | +               | 88           |                            |
| 55    | CH2=CH2 + CH2=CHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gas phase                           | 410     | 0.2       | 22            | +28.2           | 83           | In the presence            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |         |           |               |                 |              | 01 N <sub>2</sub>          |
| 26    | HAPT HAPT HAPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | РһМе                                | 09      | 5.3       | 9             | -7.5            | 11           |                            |
| 22    | nB-1-O0uB-1 ← one luB-1-one luB-1-o | C <sub>8</sub> H <sub>18</sub>      | 45      | 4.1       | 9             | -4.2            | 70           |                            |
| 58    | ~CH2CHPh + CH2 = CHPh → ~CH2CHPh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н <sub>2</sub> О                    | 40      | 1.0       | 9             | -23.5           | 84           | Emulsion                   |
| 29    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Neat                                | 30      | 1.0       | 5             | -17.9           | 82           |                            |
| 09    | ~CH2CMeCOOMe + CH2=CMeCOOMe → ~CH2CMeCOOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Neat                                | 30      | 1.0       | 2             | -19.0           | 98           |                            |
| 61    | ~CH2CMeCOOBu + CH2=CMeCOOBu → ~CH2CMeCOOBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Neat                                | 30      | 1.0       | 2             | -23.2           | 87           |                            |
| 62    | ~CH2CHCOOBu + CH2=CHCOOBu → ~CH2CHCOOBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neat                                | 30      | 1.0       | 2             | -22.5           | 88           |                            |
| 63    | ~CH2CHOAc + CH2=CHOAc → ~CH2CHOAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Neat                                | 30      | 1.0       | . S           | -24.0           | <b>6</b> 8 6 |                            |
| 4     | ~CH2CMeCOOOC + CH2=CMeCOOOC → ~CH2CMeCOOOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Neat                                | 30      | 0.        | 0 1           | -24.7           | 06 6         |                            |
| 65    | 2 ~ CH2CHPh → term'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Neat                                | 30      | 0.1       | n 1           | +13.3           | D 0          |                            |
| 99    | 2 ~ CH <sub>2</sub> CMeCOOMe → term'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neat                                | 96<br>8 | 0.1       | o c           | +25.0           | 200          |                            |
| 29    | 2 ∼ CH <sub>2</sub> CMeCOOBu → term'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neat                                | 30      | 0.1       | ç             | 4.7.4           | 83           |                            |
| 89    | $2 \sim \text{CH}_2 \hat{\text{CHCOOBu}} \rightarrow \text{term'n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Neat                                | 30      | 1.0       | 2             | +20.8           | 68           | See ref 87 for octyl ester |
| 69    | 2 ~ CH₂ÔHOAc → term'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neat                                | 30      | 1.0       | 2             | +16.3           | 88           |                            |
|       | 0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |         |           |               |                 |              |                            |
| 70    | †<br>†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH <sub>2</sub> Cl <sub>2</sub>     | 35      | 2.1       | æ             | -37.2           | 91, 92       | $\Delta V = -30.3$         |
|       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |         |           |               |                 |              |                            |

73 75 76 776 778 778 779 80

| AcOEt                                | 10 | 6.2                       | 12       | -30.2          | 91, 92     | $\Delta V = -33.9$                            |
|--------------------------------------|----|---------------------------|----------|----------------|------------|-----------------------------------------------|
| Me <sub>2</sub> CO                   | 35 | 4.1                       | <b>~</b> | -39.0          | 91, 93     | $\Delta V = -35.9$                            |
| AcOEt                                | 35 | 74.1                      | ۲ ۲      | -37.4          | 86 8       | $\Delta V = -36.8$                            |
| MeNO <sub>2</sub>                    | 35 | <del>i</del> <del>i</del> | . ~      | -32.5<br>-32.5 | S 8        | $\Delta V = -33.4$ $\Delta V = -30.7$         |
| Me <sub>2</sub> CO <sub>3</sub>      | 35 | -                         | 9        | -39.3          | 93         |                                               |
| MecN                                 | 35 | 4.1                       | 7        | -37.5          | 93         | $\Delta V = -34.5$                            |
| <i>i</i> -Pr <sub>2</sub> 0          | 32 | 1.4                       | 7        | -38.5          | 93         | $\Delta V = -38.3$                            |
| Buci                                 | 35 | 4.1                       | 7        | -38.0          | 93         |                                               |
| CH <sub>2</sub> CICH <sub>2</sub> CI | 35 | 1.4                       | 7        | -37.0          | 93         | $\Delta V = -35.5$                            |
| MeNO <sub>2</sub>                    | 35 | 4.                        | 9        | -43.0          | <b>9</b> 6 | $\Delta V = -28.2$                            |
| MeCN                                 | 35 | -                         | 9        | -32.0          | 94         | AV = -324                                     |
| CH <sub>2</sub> CICH <sub>2</sub> CI | 35 | 1.4                       | 9        | -43.7          | 94         | $\Delta V = -30.4$                            |
| BuCl                                 | 35 | 1.4                       | 7        | -45.4          | 94         | $\Delta V = -35.5$                            |
| Me <sub>2</sub> CO <sub>3</sub>      | 35 | 1.4                       | 7        | -53.6          | 94         | $\Delta V = -32.2$                            |
| Neat                                 | 20 | 4.1                       | S        | -28.7          | 95         |                                               |
| Neat                                 | 02 | 8                         | ဖ        | -28.5          | 95         |                                               |
| CH <sub>2</sub> ==CHC00Bu            | 01 | 0.7                       | 7        | -25.7          | 95         | AICl <sub>3</sub> catalyzed: $\Delta V = -31$ |
| Me <sub>2</sub> CO                   | 99 | 4:                        | 7        | -48.6          | 96         |                                               |
| MeCN                                 | 65 | 1.4                       | 7        | -41.6          | 96         | ΔV = -36.9                                    |
| BuCi                                 | 65 | 1.4                       | 7        | -51.1          | 96         |                                               |
| CH <sub>2</sub> CICH <sub>2</sub> CI | 65 | 1.4                       | 7        | -48.2          | 86         |                                               |
| Me <sub>2</sub> CO <sub>3</sub>      | 65 | 1.4                       | 7        | -42.9          | 96         |                                               |
| i-Pr₂O                               | 92 | 1,4                       | 7        | -43.7          | 96         |                                               |
| Me <sub>2</sub> CO                   | 20 | 1.7                       | œ        | -36.2          | 96         | ∆V = −34.1                                    |

83 84 85

88

92 93 94

| Continue |   |
|----------|---|
| Ì        | = |
| u        |   |
| 9        | 2 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reaction      | Solvent                              | 7, °C        | P, kbars | No. of k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|--------------|----------|---------------|-------------------------------------|-----|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | MeCN                                 | 50           | 1.7      | 8             | -33.5                               | 96  | $\Delta V = -31.9$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | BuCi                                 | 20           | 1.7      | 80            | -36.7                               | 96  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | <b>*</b> 100                         | 20           | 1.7      | œ             | -37.6                               | 96  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | CH <sub>2</sub> CICH <sub>2</sub> CI | 20           | 1.7      | 80            | -35.5                               | 96  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | i-Pr <sub>2</sub> 0                  | 20           | 1.7      | <b>&amp;</b>  | <b>-4</b> 0.7                       | 96  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 5                                    | 26           | -        | 7             | -47.3                               | ď   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Me <sub>2</sub> CO                   | 3            | 1        | -             | ?                                   | 8   |                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | MeCN                                 | 35           | 4.1      | 7             | -43.1                               | 96  | $\Delta V = -31.3$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | BuCi                                 | 35           | 1.4      | 7             | -48.9                               | 96  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | CH <sub>2</sub> CICH <sub>2</sub> CI | 32           | 4.       | 7             | -44.7                               | 96  | $\Delta V = -33.3$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Me <sub>2</sub> CO <sub>3</sub>      | 35           | 4.       | 7             | -45.6                               | 96  |                    |
| COOBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COOBI         | . Pr <sub>2</sub> 0                  | 32           | 4.       | ,             | <b>4</b> .1.4                       | 9   |                    |
| $\nearrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | BuCl                                 | 40           | 6.0      | S.            | -29.6                               | 26  | $\Delta V = -36.4$ |
| COOOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СООМе         |                                      |              |          |               |                                     |     |                    |
| <u>↑</u> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | BuCl                                 | 40           | 6.0      | 2             | -30.2                               | 26  | $\Delta V = -37.0$ |
| COOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COOMe         |                                      |              |          |               |                                     |     |                    |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·<br>}—<      | BuCi                                 | 40           | 6.0      | 5             | -32.9                               | 26  | $\Delta V = -37.2$ |
| , Meooc O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COOMe         |                                      |              |          |               |                                     |     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | BuCl                                 | 30           | 60       | rc            | -41.3                               | 97  | $\Delta V = -36.3$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                      | }            | }        | 1             |                                     |     |                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                      |              |          |               |                                     |     |                    |
| † †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COOMe         | Buci                                 | 30           | 60       | rc            | -32.7                               | 26  | $\Delta V = -36.7$ |
| MeOOC "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COOMe         |                                      |              |          |               |                                     |     |                    |
| COOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | СООМе         | ζ                                    | Ş            | Ġ        | ų             | Č                                   | ĉ   |                    |
| <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Paci                                 | <del>2</del> | 8:O      | ဂ             | -30. <b>-</b>                       | is. | 7.00               |
| C! / COOM® C!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CI            |                                      |              |          |               |                                     |     |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | BuCl                                 | 40           | 6.0      | 2             | -24.6                               | 26  | $\Delta V = -33.2$ |
| , D O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>&gt;</b> c |                                      |              |          |               |                                     |     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i             | ζ                                    | Ş            | ć        | ц             | 00                                  | 3   | 0 K 33 0           |
| $\bigcap_{1 \leq i \leq n} \bigcap_{1 \leq i \leq n} $ |               | Buci                                 | 04           | 6.0      | n             | -23.7                               | 76  | ∆v = −33.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                      |              |          |               |                                     |     |                    |

| $\Delta V = -37.0$ | $\Delta V = -36.9$ | $\Delta V = -37.1$ |       |                         |                                |                                |                                |                                |                   | $\Delta V = -36.7$                                                                                                          |                                   | $\Delta V = -30.8$                                                                                  |
|--------------------|--------------------|--------------------|-------|-------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| 86                 | 86                 | 86                 | 66    | 66<br>66                | 100                            | 100                            | 100                            | 100                            | 101               | 101<br>101<br>101<br>101<br>101                                                                                             | 101                               | 101                                                                                                 |
| -33.1              | -30.8              | -36.9              | -35.3 | -40.4<br>-40.0<br>-41.3 | -41.0                          | -37.0                          | -35.0                          | -36.5                          | -21.3             | - 28.3<br>- 31.4<br>- 32.9<br>- 26.4<br>- 33.3<br>- 22.5                                                                    | -26.1<br>-22.1<br>-30.2           | -23.1<br>-28.9<br>-38.3<br>-25.6                                                                    |
| 12                 | Ξ                  | 6                  | 12    | 11<br>0                 | 6                              |                                |                                |                                |                   |                                                                                                                             |                                   |                                                                                                     |
| 6.6                | 8.6                | 2.9                | 8.1   | 8.1<br>8.1              | 1.3                            | 1.3                            | 1.3                            | 1.3                            |                   |                                                                                                                             |                                   |                                                                                                     |
| 21                 | 21                 | 21                 | 40    | 50<br>60<br>70          | 20                             | 70                             | 70                             | 70                             | 25                | 25<br>25<br>25<br>25<br>25<br>25                                                                                            | 25<br>25<br>25<br>25              | 25<br>25<br>25<br>25                                                                                |
| BuBr               | BuBr               | BuBr               | BuBr  | BuBr<br>BuBr<br>BuBr    | C <sub>7</sub> H <sub>16</sub> | PhNO <sub>2</sub> | EtOH<br>Pho!<br>CH <sub>2</sub> ClCH <sub>2</sub> Cl<br>CH <sub>2</sub> Cl <sub>2</sub><br>Ph <b>Me</b><br>CCl <sub>4</sub> | PhNO <sub>2</sub><br>EtOH<br>PhCI | CH <sub>2</sub> ClCH <sub>2</sub> Cl<br>CH <sub>2</sub> Cl <sub>2</sub><br>PhMe<br>CCl <sub>4</sub> |

Remarks

-45.9

9

2.6

24.5

PhMe

EtOOCN=NCOOEt + CH<sub>2</sub>==CHOBu →

154

|       |        | %Jom 06 O.H | H,O 80 mol% | H <sub>2</sub> O 70 mol% | H <sub>2</sub> O 60 mol % | H <sub>2</sub> O 50 mol% | H <sub>2</sub> O 90 mol% | H <sub>2</sub> O 80 mol% | H <sub>2</sub> O 70 mol% | H <sub>2</sub> O 60 mol% | H <sub>2</sub> O 90 mol% | H <sub>2</sub> O 80 mol% | H <sub>2</sub> O /0 mol% | H O 90 mo1%           | H-O 85 mol%        | H <sub>2</sub> O 80 mol% | % oun 0.20 H | H <sub>2</sub> O 59 mol% | H <sub>2</sub> O 92.5 mol% | H <sub>2</sub> O 85 mol% | H <sub>2</sub> O 77.5 mol% | H <sub>2</sub> O 70 mol% | H <sub>2</sub> O 60 mol% | $H_2O$ 50 mol% | H <sub>2</sub> O 40 mol% |                  |                   | H-O 97 5 mol% | H <sub>2</sub> O 97.5 mol% | H <sub>2</sub> O 97.5 mol% | H <sub>2</sub> O 95 mol% | H <sub>2</sub> O 95 mol% | H <sub>2</sub> O 95 mol% | H <sub>2</sub> O 90 mol% | H <sub>2</sub> O 90 mol% | H <sub>2</sub> O 90 mol% | H <sub>2</sub> O 80 mol% | H <sub>2</sub> O 80 mol% | H <sub>2</sub> O 80 mol% | H <sub>2</sub> O 70 mol% | H <sub>2</sub> O 70 mol% | H <sub>2</sub> O 70 mol% |
|-------|--------|-------------|-------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|--------------------|--------------------------|--------------|--------------------------|----------------------------|--------------------------|----------------------------|--------------------------|--------------------------|----------------|--------------------------|------------------|-------------------|---------------|----------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 104   | 104    | 113         | 112         | 112                      | 112                       | 112                      | 112                      | 112                      | 112                      | 112                      | 112                      | 112                      | 217                      | 2 5                   | 5 5                | 13                       | 113          | 113                      | 113                        | 113                      | 113                        | 113                      | 113                      | 113            | 113                      | 114              | 114<br>14         | ± <u>+</u>    | 114                        | 114                        | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      | 114                      |
| -30.0 | -32    | -12 13      | -15.6       | -17.9                    | -19.8                     | -18.8                    | -23.1                    | -19.0                    | -18.1                    | -13.62                   | -25.5                    | -22.7                    | /1-                      | 13.91                 | 20.77              | - 19.33                  | -20.37       | -17.32                   | -11.92                     | -13.10                   | -14.15                     | -15.87                   | -16.31                   | -16.30         | -18.85                   | -9.09<br>9.09    | 6.6<br>6.6<br>6.6 | -10.07        | -13.0                      | -15.2                      | -21.54                   | -24.7                    | -24.5                    | -24.7                    | -23.97                   | -23.1                    | -18.66                   | -20.22                   | -22.03                   | -19.8                    | -19.5                    | -20.71                   |
| 4     | 7      | 4           | - 4         | 4                        | 2                         | 5                        | 2                        | 2                        | 2                        | 2                        | 2                        | 5                        | ا ۵                      | ~ 0                   | ່                  | o 00                     | 9            | 9                        | 7                          | 89                       | 8                          | 8                        | 9                        | 9              | 2                        | <b>ω</b> 1       | ~ ¢               | <u>y</u> (6   | 9                          | 9                          | 7                        | 9                        | 9                        | 9                        | 9                        | 13                       | 9                        | 9                        | 9                        | 9                        | 9 1                      | ,                        |
| 6.0   | 3.1    | 8           | 2.8         | 2.8                      | 4.1                       | 4.1                      | 4.1                      | 4.1                      | 4.1                      | 4.1                      | <del>4</del> .1          | 4.1                      | L. 6                     | 7.0<br>7.1            | <br><del>-</del> - | . <del>1</del>           | 4            | 1.4                      | 2.8                        | 4.1                      | 4.1                        | 4.1                      | 4.1                      | 4.1            | 4.1                      | 3.4              | 2.7               | e:-<br>7.0    | 2.7                        | 2.1                        | 4.1                      | 2.7                      | 2.7                      | ₽.1                      | 4.1                      | 4.1                      | 4.1                      | 4.1                      | 4.1                      | 3.4                      | <b>4</b> .1              | <b>4</b> .1              |
| 25    | 24.5   | 503         | 50.3        | 50.3                     | 50.3                      | 50.3                     | 50.3                     | 50.3                     | 50.3                     | 50.3                     | 50.3                     | 50.3                     | 50.3                     | 50.1                  | 50.1               | 50.1                     | 50.1         | 50.1                     | 50.1                       | 50.1                     | 50.1                       | 50.1                     | 50.1                     | 50.1           | 50.1                     | 04 5             | 50.3<br>60.5      | 8 6           | 50.3                       | 60.5                       | 40                       | 50.3                     | 60.5                     | 40                       | 50.3                     | 60.5                     | 40                       | 50.3                     | 60.5                     | 40                       | 50.3                     | 60.5                     |
| PhMe  | РһМе   | A MeOH      | Ag MeOH     | Ад МеОН                  | Aq MeOH                   | Аф МеОН                  | Aq i-ProH                | Aq i-PrOH                | Aq i-Proh                | Aq i-Proh                | Aq f-BuOH                | Aq t-BuOH                | Aq r-Buoh                | Ad Me <sub>2</sub> CO | A Me-CO            | An Me.CO                 | Ad MesCO     | Aq Me <sub>2</sub> CO    | Aq DMSO                    | Aq DMSO                  | Aq DMSO                    | Aq DMSO                  | Aq DMSO                  | Aq DMSO        | Aq DMSO                  | H <sub>2</sub> O | O C               | Ac tBuOH      | Aq f-BuOH                  | Aq t-BuOH                  | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq t-BuOH                | Aq f-BuOH                |
|       | NCOOEt |             |             |                          |                           |                          |                          |                          |                          |                          |                          |                          |                          |                       |                    |                          |              |                          |                            |                          |                            |                          |                          |                |                          |                  |                   |               |                            |                            |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |

155

156

PhCH<sub>2</sub>CI + H<sub>2</sub>O → PhCH<sub>2</sub>OH + HCI

| _        |
|----------|
| Ď        |
| ž        |
| .5       |
| ₹        |
| ٥        |
| Q        |
| <u>5</u> |
| <u>5</u> |
| щ        |
| ۳        |
| щ        |

| Š.           |                                                                                                                                  |                                         |                |                 |                  |                                         |           |                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------------|------------------|-----------------------------------------|-----------|--------------------------|
| -            | Reaction                                                                                                                         | Solvent                                 | T, °C          | P, kbars        | No. of<br>k data | $\Delta V^*$ , cm $^3$ /mol             | Ref       | Remarks                  |
| 200          |                                                                                                                                  | H <sub>2</sub> O                        | 50             | 1.6             | 5                | -10.7                                   | 115       |                          |
| 201          |                                                                                                                                  | Aq glycerol                             | 20             | 1.6             | 2                | -10.7                                   | 115       | H <sub>2</sub> O 95 v%   |
| 202          |                                                                                                                                  | Aq glycerol                             | 20             | 1.6             | 5                | -10.8                                   | 115       | H <sub>2</sub> O 87.5 v% |
| 203          |                                                                                                                                  | Aq glycerol                             | 20             | 1.6             | 2                | -10.4                                   | 115       | H <sub>2</sub> O 75 v%   |
| 402<br>704   |                                                                                                                                  | Aq glycerol                             | 20             | 1.6             | 2                | -11.0                                   | 115       | H <sub>2</sub> O 50 v%   |
| 502          |                                                                                                                                  | Aq glycerol                             | 20<br>°        | 1.6             | 4                | -10.7                                   | 115       | H <sub>2</sub> O 25 v%   |
| 0 700        |                                                                                                                                  | H <sup>2</sup> O                        | 0              | 2               | 5                | +20                                     | 116       |                          |
| 702          |                                                                                                                                  | H <sub>2</sub> 0                        | ις į           | 2               | 5                | 69-                                     | 116       |                          |
| 802          |                                                                                                                                  | H <sub>2</sub> 0                        | 0 :            | 7               | 2                | -109                                    | 116       |                          |
| 60 F         |                                                                                                                                  | H <sub>2</sub> 0                        | <del>.</del> 5 | 7               | 2                | -139                                    | 116       |                          |
| 211          |                                                                                                                                  | 0, 0<br>0, 0                            | 40<br>60.5     | 2.1             | 9 4              | -8.89                                   | 117       |                          |
| 212          | $CI \longrightarrow CH_2CI + H_2O \longrightarrow CI \longrightarrow CH_2OH + HCI$                                               | , О <sup>2</sup> Н                      | 50.3           | 2.7             | o го             |                                         | 138       |                          |
|              |                                                                                                                                  | 4                                       |                | i               | ,                | ?                                       | 2         |                          |
| 213          |                                                                                                                                  | Aq EtOH                                 | 50.3           | 2.7             | 2                | -13.8                                   | 118       | H <sub>2</sub> O 95 mol% |
| 4 14<br>4 14 |                                                                                                                                  | Aq EtOH                                 | 50.3           | 4.1             | 9                | -17.9                                   | 118       | %lom 06 O <sub>2</sub> H |
| 216          |                                                                                                                                  | Aq EtOH                                 | 50.3           | 4.1             | 9                | -18.8                                   | 118       | H <sub>2</sub> O 85 mol% |
| 217          |                                                                                                                                  | Aq ETOH                                 | 50.3           | <b>4</b> .1     | ဖွ               | -21.8                                   | 118       | H <sub>2</sub> O 80 mol% |
| 218          |                                                                                                                                  | AQ ETOH                                 | 50.3           | 4.1             | ဖ ဖ              | -19.9                                   | 118       | H <sub>2</sub> O 75 mol% |
| 219          |                                                                                                                                  | AG ETOH                                 | 50.3           | 4, 4            | go y             | -18.9                                   | 118       | H <sub>2</sub> O 70 mol% |
| 220          | Ph,CHCI + H <sub>2</sub> O → Ph,CHOH + HCI                                                                                       | Ac o-dioxane                            | 5.05           | -<br>+ -        | o u              | 14.9                                    | 2 5       | H <sub>2</sub> O 60 mol% |
| 221          |                                                                                                                                  | Ag p-dioxane                            | 20             |                 | o uc             | 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 19      | H <sub>2</sub> O 9.8 ₩%  |
| 222          |                                                                                                                                  | Aq p-dioxane                            | 20             |                 | o ko             | 14.0                                    | 1 - 1     | N2O 14:0 ₩%              |
| 223          |                                                                                                                                  | Aq p-dioxane                            | 25             | · <del>-</del>  | o ro             | -13.7                                   | 119       | H-O 24 4 w%              |
| 224          |                                                                                                                                  | Aq p-dioxane                            | 25             | -               | 5                | -13.2                                   | 119       | H <sub>2</sub> O 29.3 w% |
| 522          |                                                                                                                                  | Aq p-dioxane                            | 25             | _               | 2                | -13.3                                   | 119       | H <sub>2</sub> O 36.0 w% |
| 977          | FBUCI + H2O -+ FBUOH + HCI                                                                                                       | H <sub>2</sub> O                        | 0              | 1.5             | 4                | -2.0                                    | 24        | ı                        |
| 228          |                                                                                                                                  | Aq EtOH                                 | 0 (            | <del>7.</del> . | 9                | -7.0                                    | <b>24</b> | %^ 06 O²H                |
| 57           |                                                                                                                                  | AQ ETOH                                 | 0 0            | <del>.</del> .  | တ (              | -13.2                                   | <b>54</b> | H <sub>2</sub> O 75 v%   |
| 230          |                                                                                                                                  | AQ ETOH                                 | <b>-</b>       | ا<br>د د        | 12<br>°          | -21.5                                   | 24        | H <sub>2</sub> O 60 v%   |
| 231          |                                                                                                                                  | AG ETOH                                 | 0.2            | 0.7             | m u              | -9.3                                    | 18        | H <sub>2</sub> O 98 mol% |
| 232          |                                                                                                                                  | Ag EtOH                                 | 0.0            | - 1-6           | . 4              | -19.9                                   | 118       | M2O 90 mot %             |
| 233          |                                                                                                                                  | Aq EtOH                                 | 0.2            | 2.1             | - 4              | -17.6                                   | 118       | % 10 III 0 K             |
| 234          | O <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> CI + H <sub>2</sub> O → O <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> OH + HCI | Aq p-dioxane                            | 70             | -               | 2                | -13.1                                   | 119       | %× 8.6 0.4               |
| 235          |                                                                                                                                  | Aq p-dioxane                            | 20             | -               | 2                | -13.9                                   | 119       | H <sub>2</sub> O 18.8 w% |
| 236          |                                                                                                                                  | Aq p-dioxane                            | 02             | -               | 5                | -14.4                                   | 119       | H <sub>2</sub> O 24.4 w% |
| 23,          |                                                                                                                                  | Aq p-dioxane                            | 20             | -               | 5                | -14.8                                   | 119       | H <sub>2</sub> O 36.0 w% |
| 738          |                                                                                                                                  | Aq p-dioxane                            | 02             | -               | 5                | -14.6                                   | 119       | H <sub>2</sub> O 49.3 w% |
| 239          | MeBr + H <sub>2</sub> O → MeOH + HBr                                                                                             | H <sub>2</sub> O                        | 09             | က               | Ξ                | -17.0                                   | 120       |                          |
| 240          |                                                                                                                                  | H <sup>2</sup> O                        | 20             | ဇာ              | 13               | -14.9                                   | 120       |                          |
| 240          |                                                                                                                                  | H <sup>2</sup> O                        | 80             | <del>-</del>    | 2                | -11.7                                   | 120       |                          |
| 242          |                                                                                                                                  | H <sub>2</sub> O                        | 40             | က               | Ξ.               | -15.2                                   | 120       |                          |
| 247          |                                                                                                                                  | , H                                     | 20             | m ·             | <del>-</del>     | -13.1                                   | 120       |                          |
| 245          |                                                                                                                                  | O2H :                                   | 9              | - (             | 2                | -10.0                                   | 120       |                          |
| 2            |                                                                                                                                  | $\mathcal{O}_{\mathbf{Z}}^{\mathbf{L}}$ | 04             | 2.1             | ဖ                | -9.65                                   | 117       |                          |

| 246                  |                                                                                                                | H <sub>2</sub> O<br>D <sub>2</sub> O | 60         | 2.1          | 9          | -11.02<br>-9.07  | 117               |                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|--------------|------------|------------------|-------------------|-------------------------------------------------|
| 248<br>249           | CH <sub>2</sub> =CHCH <sub>2</sub> CI + H <sub>2</sub> O → CH <sub>2</sub> =CHCH <sub>2</sub> OH + HCI         | D20<br>H20                           | 60<br>29.3 | 1.7          | ဖြက        | -11.42<br>-10.2  | 117               |                                                 |
| 250<br>251           |                                                                                                                | H <sub>2</sub> 0<br>H <sub>2</sub> 0 | 40<br>50.3 | 2:8<br>2:8   | 4 Ն        | -10.69<br>-11.40 | 121               |                                                 |
| 252<br>253           | CH; = CMeCH; CI + H; O → CH; = CMeCH; OH + HC                                                                  | , <del>L</del> T                     | 60.5       | 2.8          | 4 0        | -12.58<br>-10.16 | 121               |                                                 |
| }                    | 7                                                                                                              | )                                    | }          | }            | •          |                  |                   |                                                 |
| 254                  | + H <sub>2</sub> O -+ C <sub>4</sub> H,OH + HCI                                                                | H <sub>2</sub> O                     | 12         | -            | 9          | 14.83            | 121               |                                                 |
| 255                  | PhCMe <sub>2</sub> Cl + H <sub>2</sub> O → PhCMe <sub>2</sub> OH + HCl                                         | Aq EtOH                              | 45         | -            | 5          | -18              | 122               | H <sub>2</sub> O 30 v%                          |
| 256                  |                                                                                                                | Aq EtOH                              | 45         | _            | 5          | -214             | 122               | H <sub>2</sub> O 25 v%                          |
| 257                  |                                                                                                                | Aq EtOH                              | 45         | - 1          | ro r       | -26"             | 122               | H <sub>2</sub> O 20 v%                          |
| 730<br>720           |                                                                                                                | Aq EtOH<br>Aq EtOH                   | 42         |              | വ          | - 13 <i>h</i>    | 122               | H <sub>2</sub> O 10 v%                          |
| 260                  | $- \left( \bigcirc \right) - CH_2CI + H_2O \longrightarrow - \left( \bigcirc \right) - CH_2OH + HCI$           | Aq Me <sub>2</sub> CO                | 20         | -            | 4          | -20.0            | 123               | H <sub>2</sub> O 50.45 mol%                     |
| 261                  | ].                                                                                                             | OJ West                              | 7          | <del>,</del> | •          | -228             | 103               | H.O 73 08 mol%                                  |
| 262                  |                                                                                                                | Ad MesCO                             | 20         |              | † <b>4</b> | -24.0            | 123               | H <sub>2</sub> O 80.28 mol %                    |
| 263                  |                                                                                                                | Aq Me <sub>2</sub> CO                | 20         | -            | 4          | -18.5            | 123               | H <sub>2</sub> O 85.93 mol%                     |
| 264                  | PhCH <sub>2</sub> Cl + H <sub>2</sub> O → PhCH <sub>2</sub> OH + HCl                                           | Aq Me <sub>2</sub> CO                | 20         | -            | 4          | -21.4            | 123               | H <sub>2</sub> O 85.93 mol%                     |
| 265                  | $CI \longrightarrow CH_2CI + H_2O \longrightarrow CI \longrightarrow CH_2OH + HCI$                             | Aq Me <sub>2</sub> CO                | 20         | -            | 4          | -21.8            | 123               | H <sub>2</sub> O 85.93 mol%                     |
| 266                  | $O_2N = CH_2CI + H_2O \rightarrow O_2N = CH_2OH + HCI$                                                         | Aq Me <sub>2</sub> CO                | 20         | -            | 4          | -23.3            | 123               | H <sub>2</sub> O 85.93 mol %                    |
|                      |                                                                                                                |                                      |            |              |            |                  |                   |                                                 |
| 267                  | $-$ CH <sub>2</sub> CI + H <sub>3</sub> O $\rightarrow$ CH <sub>2</sub> OH + HCI                               | H <sub>2</sub> 0                     | -          | 2.1          | 9          | -4.3             | 27                |                                                 |
| 268                  |                                                                                                                | H <sub>2</sub> 0                     | 20         | 2.1          | 2          | -6.3             | 27                |                                                 |
| 269                  | BuBr + H <sub>2</sub> O → BuOH + HBr                                                                           | 0 H                                  | 55         | 3.4          | 9          | -10.5            | 27                |                                                 |
| 27.7                 | January Chromata                                                                                               | O C                                  | 69.9<br>25 | 4.<br>4.     | ם ער       | - 10.5<br>- 8.8  | 27<br>12 <b>4</b> | AV = -70                                        |
| 272                  | PhCH <sub>2</sub> Br + H <sub>2</sub> O → PhCH <sub>2</sub> OH + HBr                                           | 0.<br>4.                             | S2 12      |              | ည          | -7.3             | 124               | Ш                                               |
| 273                  | CH <sub>2</sub> =CHCH <sub>2</sub> CI + H <sub>2</sub> O → CH <sub>2</sub> =CHCH <sub>2</sub> OH + HCI         | H <sub>2</sub> O                     | 25         | -            | 4          | 8.6-             | 124               | $\Delta V = -9.6$                               |
| 274                  | MeOCH <sub>2</sub> CMe <sub>2</sub> Cl + H <sub>2</sub> O → MeOCH <sub>2</sub> CMe <sub>2</sub> OH + HCl       | H <sub>2</sub> O                     | 25         | -            | 5          | -7.3             | 124               | $\Delta V = -10.6$                              |
| 275<br>276           | MeBr + H₂O → MeOH + HBr<br>F*Br + H•O → E+OH + HBr                                                             | 0 Z                                  | 9 9        | ლ ი          | <b>→</b> ư | 14.5             | 125               |                                                 |
| 277                  | BuCl + H <sub>2</sub> O → BuOH + HCl                                                                           | 0.<br>T                              | 65         | ာက           | <b>4</b>   | -12              | 125               |                                                 |
| 278                  | $t$ -BuCl + $H_2O \rightarrow t$ -BuOH + HCl                                                                   | Aq Me <sub>2</sub> CO                | 25         | 1.3          | 4          | -16.5            | 125               | %√ 05 O √                                       |
| 279                  |                                                                                                                | Aq Me <sub>2</sub> CO                | 20         | 5            | 4          | -24              | 125               | H <sub>2</sub> O 10 w%                          |
| 78.7<br>78.7<br>78.7 | PRCH2CI + H2O -> PRCH2OH + HCI PR.CHCI + H2O -> PR.CHOH + HCI                                                  | Aq Me <sub>2</sub> CO                | 25.1<br>48 | 2.5          | 4          | -20<br>-16       | 125               | H <sub>2</sub> O 50 v%<br>H <sub>2</sub> O 5 w% |
| 282                  | PhCH <sub>2</sub> CI + H <sub>2</sub> O → PhCH <sub>2</sub> OH + HCI                                           | 0°H                                  | 50.4       | 9.0          | æ          | -7.8             | 127               |                                                 |
| 283                  | c-C <sub>3</sub> H <sub>5</sub> CH <sub>2</sub> CI + H <sub>2</sub> O → C <sub>4</sub> H <sub>7</sub> OH + HCI | O <sup>2</sup> H                     | 16.6       | 0.5          | 5          | 0.6-             | 127               |                                                 |
| 284                  |                                                                                                                | H <sub>2</sub> O                     | 20.5       | 9.0          | 4          | -9.2             | 127               |                                                 |
| 285                  | c-C₄H <sub>7</sub> CI + H <sub>2</sub> O → C₄H <sub>7</sub> OH + HCI                                           | H <sub>2</sub> O                     | 30.5       | 0.7          | S.         | -8.2             | 127               |                                                 |
| 782                  |                                                                                                                | O (                                  | 0 0        | 0.7          | ω u        | 2.6-             | 127               |                                                 |
| 288                  |                                                                                                                | H 20                                 | 90<br>60.2 | 0.7          | 0 <b>4</b> | - 14.7<br>15.6   | 127               |                                                 |
| 289                  | $F \longrightarrow CMe_2CI + H_2O \longrightarrow F \longrightarrow CMe_2OH + HCI$                             | Aq Me <sub>2</sub> CO                | 25         | -            | 22         | -10.9            | 130               | H <sub>2</sub> O 11.5 w%                        |

| _           |  |
|-------------|--|
| nued        |  |
| Conti       |  |
| こ<br>=<br>= |  |
| =           |  |
| 펄           |  |

| TABLE II                  | TABLE II (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                |                 |                  |                             |                   |                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|-----------------|------------------|-----------------------------|-------------------|----------------------------------------------------------------------------------|
| No.                       | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solvent                                                                 | 1, °C          | P, kbars        | No. of<br>k data | $\Delta V^*$ , cm $^3$ /mol | Ref               | Remarks                                                                          |
| 290                       | $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aq Me <sub>2</sub> CO                                                   | 52             | -               | S.               | -11.2                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 291                       | $O(1 + H_2O) \longrightarrow O(1 + H_2O) \longrightarrow O(1 + HC)$ $O(1 + H_2O) \longrightarrow O(1 + HC)$ $O(1 + H_2O) \longrightarrow O(1 + HC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aq Me <sub>2</sub> CO                                                   | 25             | -               | ထ                | -11.2                       | 130               | H₂O 11.5 w%                                                                      |
| 292                       | CMe₂CI + H₂O →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aq Me <sub>2</sub> CO                                                   | 25             | -               | ß                | -11.4                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 293<br>29 <b>4</b><br>295 | r-Bu<br>PhCMe <sub>2</sub> Cl + H <sub>2</sub> O → PhCMe <sub>2</sub> OH + HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aq Me <sub>2</sub> CO<br>Aq Me <sub>2</sub> CO<br>Aq Me <sub>2</sub> CO | 25<br>35<br>40 | 1<br>0.8<br>0.8 | ດນູ              | -12.0<br>-12.8<br>-13.7     | 0£1<br>0£1<br>0£1 | H <sub>2</sub> O 11.5 w%<br>H <sub>2</sub> O 11.5 w%<br>H <sub>2</sub> O 11.5 w% |
| 296                       | $OMe_2 GI + H_2 O \longrightarrow OMe_2 OH + HCI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aq Me <sub>2</sub> CO                                                   | 25             | -               | ĸ                | -10.9                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 297                       | CMe <sub>2</sub> Cl + H <sub>2</sub> O →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aq Me <sub>2</sub> CO                                                   | 25             | 9.0             | 4                | -17.1                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 298                       | $Br$ $CMe_2CI + H_2O \rightarrow Br$ $CMe_2OH + HCI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aq Me <sub>2</sub> CO                                                   | 25             | 8.0             | 2                | -18.5                       | 130               | H₂O 11.5 w%                                                                      |
| 299                       | $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aq Me <sub>2</sub> CO                                                   | 25             | 0.8             | S.               | -18.2                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 300                       | MeS $ \begin{array}{c} \text{MeS} \\ \text{CMe}_2\text{CI} + \text{H}_2\text{O} \longrightarrow \\ \end{array} $ $ \begin{array}{c} \text{CMe}_2\text{OH} + \text{HCI} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aq Me <sub>2</sub> CO                                                   | 52             | 0.8             | 5                | -19.7                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 301                       | F  CMe <sub>2</sub> CI + H <sub>2</sub> O. $\longrightarrow$ CMe <sub>2</sub> OH + HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aq Me <sub>2</sub> CO                                                   | 25             | 0.8             | S                | -20.4                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 302                       | $CMe_2GI + H_2O \longrightarrow CMe_2OH + HGI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aq Me <sub>2</sub> CO                                                   | 25             | 8.0             | S.               | -17.9                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 303                       | CMe <sub>2</sub> Cl + H <sub>2</sub> O →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aq Me <sub>2</sub> CO                                                   | 25             | -               | 9                | -22.5                       | 130               | H <sub>2</sub> O 11.5 w%                                                         |
| 304                       | Ci Ci PhCHMeCi + $H_2O \longrightarrow PhCHMeOH + HCi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aq EtOH                                                                 | 25             | -               | ß                | -12.6                       | 131               | H <sub>2</sub> O 20 v%                                                           |
| 305                       | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} $ | Ад ЕtОН                                                                 | 25             | -               | Z.               | 14.1                        | 131               | H <sub>2</sub> O 20 <b>v</b> %                                                   |

| H <sub>2</sub> O 20 v%                               | H <sub>2</sub> O 20 v%                               | H <sub>2</sub> O 20 v%                              | H <sub>2</sub> O 20 v% |                               |                                                                            |                                           |                                           |                                                                   |                                                             |                                           |                                                              |                                            |                                                                                    | H <sub>2</sub> O 45 w% | H <sub>2</sub> O 45 w%                      | H₂O 45 w%                                                                                                                                     | H <sub>2</sub> O 45 w% | H₂O 45 w%                       | ·~                                                                            |
|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------|-------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-------------------------------------------------------------------------------|
| 131                                                  | 131                                                  | 131                                                 | 131                    | 132                           | 132                                                                        | 132                                       | 132                                       | 132<br>132                                                        | 132                                                         | 132                                       | 132                                                          | 132                                        | 132                                                                                | 133                    | 133                                         | 133                                                                                                                                           | 133                    | 133                             | 134                                                                           |
| -11.8                                                | -17.3                                                | -18.4                                               | -15.7                  | -14.7                         | -12.9<br>-11.3                                                             | -11.7                                     | -10.5                                     | - 18.9<br>- 19.4                                                  | -18.4                                                       | -18.3                                     | -15.2                                                        | -15.4<br>-15.6                             | -13.9<br>-13.9                                                                     | -20.0                  | -20.5                                       | -21.6                                                                                                                                         | -20.6                  | -21.0                           | -7.3                                                                          |
| S                                                    | 2                                                    | 7                                                   | 7                      | 5                             | 4 <                                                                        | 2.                                        | 4 1                                       | ນດ                                                                | 2                                                           | S I                                       | ı,                                                           | n (c                                       | വ                                                                                  | 01                     | <b>&amp;</b>                                | ω                                                                                                                                             | ۲                      | თ                               |                                                                               |
| -                                                    | 1.5                                                  | 1.5                                                 | 1.5                    | -                             | 0.7                                                                        | 0.7                                       | 0.7                                       |                                                                   |                                                             |                                           | 0.7                                                          |                                            | 0.7                                                                                | 6.0                    | 6.0                                         | 0.8                                                                                                                                           | 0.8                    | 0.8                             | 0.7                                                                           |
| 25                                                   | 25                                                   | 25                                                  | 25                     | 25                            | 25                                                                         | 25                                        | 25                                        | 25<br>25                                                          | 25                                                          | 25                                        | 25                                                           | C 7                                        | 25                                                                                 | 25                     | 25                                          | 25                                                                                                                                            | 25                     | 25                              | 25                                                                            |
| Aq EtOH                                              | Aq EtOH                                              | Aq EtOH                                             | Aq EtOH                | НСООН                         | HC00H                                                                      | НСООН                                     | НСООН                                     | MeOH                                                              | MeOH                                                        | МеОН                                      | MeOH                                                         | MeOH                                       | MeOH                                                                               | Aq Me <sub>2</sub> CO  | Aq Me <sub>2</sub> CO                       | Aq Me <sub>2</sub> CO                                                                                                                         | Aq Me <sub>2</sub> CO  | Aq Me <sub>2</sub> CO           | НСООН                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | CH,GI + H <sub>2</sub> O → CH <sub>2</sub> OH + HGI | +(-)                   | FPOTS + HCOOH → FPOCOH + HOTS | EtCHMeOTs + HCOOH → EtCHMeOCOH + HOTs  Et CHOTs + UCOOH → Et CHOCOH + HOTs | i-PrcHMeOTs + HCOOH → i-PrcHMeOCOH + HOTs | t-BucHMeOTs + HCOOH → t-BucHMeOCOH + HOTs | FFOIS + MeOH -> FPOMe + HOIS FFOHMEOIS + MEOH -> FFCHMEOME + HOIS | Et <sub>2</sub> CHOTs + MeOH → Et <sub>2</sub> CHOMe + HOTs | i-Prchimeots + MeoH → i-Prchimeome + Hots | FP <sub>2</sub> CHOTs + MeOH → FP <sub>12</sub> CHOMe + HOTs | FBU(FPICHOIS + MeOH -> FBU(FPICHOME + HOTS | (FDU)2CHOIS $+$ MeOH $\rightarrow$ (FDU)2CHOME $+$ HOIS (EI)3C(f-BU)CHOME $+$ HOIS | sNOH + HO O'H + SNO    | 1-Bu ONS + H <sub>2</sub> O> 1-Bu OH + HONS | $P \rightarrow P \rightarrow$ | HOWS + HONS            | $+ H_2O \longrightarrow + HONs$ | $MeO \longrightarrow CH_2CHMeOTs + HCOOH \longrightarrow CH_2CHMeOCOH + HOTs$ |
| 306                                                  | 307                                                  | 308                                                 | 309                    | 310                           | 311                                                                        | 313                                       | 314                                       | 315<br>316                                                        | 317                                                         | 318                                       | 319                                                          | 320                                        | 322                                                                                | 323                    | 324                                         | 325                                                                                                                                           | 326                    | 327                             | 328                                                                           |

| TABLE      | TABLE II (Continued)                                                                                                                                                                    |                                             |          |          |                  |                 |            |                                            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------|------------------|-----------------|------------|--------------------------------------------|
| Ö.         | Reaction                                                                                                                                                                                | Solvent                                     | 7, °C    | P, kbars | No. of<br>k data | ΔV*,<br>cm³/mol | Ref        | Remarks                                    |
| 329        | —————————————————————————————————————                                                                                                                                                   | нсоон                                       | 25       | 0.7      |                  | -7.1            | 134        | <i>i</i>                                   |
|            | CH <sub>2</sub> CHMeOCOH + HOTS                                                                                                                                                         |                                             |          |          |                  |                 |            |                                            |
| 330        | PhCH <sub>2</sub> CHMeOTs + HCOOH → PhCH <sub>2</sub> CHMeOCOH + HOTs                                                                                                                   | НСООН                                       | 25       | 0.7      | 4                | -7.8            | 134        | •                                          |
| 331        | CI────────────────────────────────────                                                                                                                                                  | НСООН                                       | 25       | 0.7      |                  | -9.1            | 134        |                                            |
|            | CHOSCHAROCOH + HOTS                                                                                                                                                                     |                                             |          |          |                  |                 |            |                                            |
| 332        | O <sub>2</sub> N—(○) → CH <sub>2</sub> CHMeOTs + HCOOH →                                                                                                                                | нсоон                                       | 25       | 0.7      |                  | -13.1           | 134        |                                            |
|            | $O_2N - \left( \bigcirc \right) - CH_2CHMeOCOH + HOTs$                                                                                                                                  |                                             |          |          |                  |                 | ,          |                                            |
| 333<br>334 | PhCH,CHMeOTs + HCOOH → PhCH,CH2CHMeOCOH + HOTs PhCH,CH2CHEIOTs + HCOOH → PhCH2CH2CHEIOCOH + HOTs                                                                                        | НСООН                                       | 25<br>25 | 1 0.7    | 4 4              | -9.8<br>-8.5    | 134<br>134 |                                            |
| 335        | MeO—(CH <sub>∂A</sub> ONs + HOR→                                                                                                                                                        | Aq iPrOH                                    | 4        | 2        | 5                | -21.0           | 135        | H <sub>2</sub> O 2 v%                      |
|            | $MeO$ $(CH_2)_4OR + HONs$                                                                                                                                                               |                                             |          |          |                  |                 |            |                                            |
| 336        | $\tilde{O} \longrightarrow (CH_{r})_{4}OBs \longrightarrow O \longrightarrow  \longrightarrow V + BsO^{-}$                                                                              | Aq <i>i</i> -Proh                           | 52       | 4        | 2                | -5.4            | 135        |                                            |
| 337        | $\tilde{o} = \left( \bigcap_{i \in A_i, i \in A_i} \operatorname{cd}_{i, i \in A_i} \right) \to \left( \bigcap_{i \in A_i} \bigcap_{i \in A_i} + \operatorname{cl}_{i \in A_i} \right)$ | Aq i-Proh                                   | 16       | ဗ        | 4                | 1.1             | 135        |                                            |
| 338        | EtCl + MeOH → EtOMe + HCl                                                                                                                                                               | MeOH                                        | 09       | 6.0      | 2                | -32             | 135        |                                            |
| 340<br>340 | FBuCi + MeOH → f-BuOMe + HCi                                                                                                                                                            | MeOH                                        | 22<br>20 |          | <b>4</b> €       | -31<br>-33      | 135<br>135 |                                            |
| 341        |                                                                                                                                                                                         | МеОН                                        | 25       | 5        | o ro             | -25.4           | 136        |                                            |
| 342<br>343 |                                                                                                                                                                                         | MeOH<br>MeOH                                | 30       | 7        | 2                | -25.84<br>-26.7 | 137        |                                            |
| 344        | t-BuBr + MeOH → t-BuOMe + HBr                                                                                                                                                           | МеОН                                        | 90       | -        | 5                | -25.2           | 138        | $\Delta V = -17.6 \text{ at}$              |
| 345        | t-BuBr + EtOH → t-BuOEt + HBr                                                                                                                                                           | EtOH                                        | 20       | -        | 5                | 20.2            | 138        | $\Delta V = -15.3 \text{ at}$              |
| 346        | t-BuBr + H <sub>2</sub> O → t-BuOH + HBr                                                                                                                                                | Aq N-Me-2-                                  | 40       | -        | 5                | -20.6           | 138        | $\Delta U = C$<br>$\Delta H = -13.8$ at    |
|            |                                                                                                                                                                                         | pyrrolidone                                 |          |          |                  |                 |            | 20 °C; H <sub>2</sub> O<br>10 <b>w</b> %   |
| 347        |                                                                                                                                                                                         | Aq Me <sub>2</sub> CO                       | 50       | - ,      | ı, cı            | -41.7           | 138        | H <sub>2</sub> O 5 w%                      |
| 349        | t-BuBr → Me <sub>2</sub> C—CH <sub>2</sub> + HBr                                                                                                                                        | Aq Me <sub>2</sub> CU<br>M-Me-2-pyrrolidone | g 9      | - 2      | ဂဖ               | -23.9<br>-20.7  | 138<br>138 | $\Lambda_2^2$ O 10 w% $\Delta V = -9.2$ at |
| 350        |                                                                                                                                                                                         |                                             | ç        | •        | L                | i c             |            | 20 ° C                                     |
| occ        |                                                                                                                                                                                         | - DMI                                       | 2        | -        | o.               | -25.0           | 138        | $\Delta V = -12.2 \text{ at}$              |
| 351<br>352 | MeOTs + HCOOH → MeOCOH + HOTs<br>i-ProTs + HCOOH → i-ProCoH + HOTs                                                                                                                      | нсоон<br>нсоон                              | 45<br>45 | 0.7      | 4 ro             | -13.4<br>-15.6  | 139<br>139 | ,                                          |
|            |                                                                                                                                                                                         |                                             |          |          |                  |                 |            |                                            |

| tinued |  |
|--------|--|
| S      |  |
| =      |  |
| Щ      |  |
| 8      |  |
|        |  |

| TABLE II          | TABLE II (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                          |          |                  |                               |                                          |                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|----------|------------------|-------------------------------|------------------------------------------|------------------------------------------|
| o<br>N            | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solvent                                      | 7, °C                    | P, kbars | No. of<br>k data | ΔV*,<br>cm³/mol               | Ref                                      | Remarks                                  |
| 368               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aq EtOH                                      | 49.6                     | 6.0      | ω                | - 14.39                       | 140                                      | H₂O 20 v%                                |
| 369               | + H <sub>2</sub> O> fragmentation products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aq EtOH                                      | 49.6                     | 6.0      | æ                | -17.36                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 370               | $N - CI$ $Me_2NCH_2CH_2CMe_2CI + H_2O \longrightarrow fragmentation, S_N1, and E1 products$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aq EtOH                                      | 39.3                     | 0.9      | 6                | -18.19                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 37.1              | Me <sub>2</sub> NCH <sub>2</sub> CMe <sub>2</sub> CH(Me)Cl + H <sub>2</sub> O →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq EtOH                                      | 49.6                     | 6.0      | 80               | -18.02                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 372               | Me <sub>2</sub> NCH <sub>2</sub> CMe <sub>2</sub> CMe <sub>2</sub> CI + $H_2O \rightarrow fragmentation$ and elimination products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aq EtOH                                      | 2.2                      |          |                  | -8.05                         | 140                                      | H <sub>2</sub> O 20 v%                   |
| 373               | CMe <sub>2</sub> CI + H <sub>2</sub> O fragmentation, S <sub>N</sub> 1, and E1 products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aq EtOH                                      | 15                       |          |                  | -16.34                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 374               | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aq EtOH                                      | 25                       |          |                  | -17.11                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 375               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq EtOH                                      | 35                       |          |                  | -17.92                        | 140                                      | H <sub>2</sub> O 20 v%                   |
| 376               | NMe + H₂O → fragmentation and E1 products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aq EtOH                                      | 65.5                     |          |                  | -27.10                        | 140                                      | H <sub>2</sub> O 20 v%                   |
|                   | N°O IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                          |          |                  |                               |                                          |                                          |
| 377               | O <sub>2</sub> N — O — NO <sub>2</sub> + AcOH — HOTS + O <sub>2</sub> N — O <sub>2</sub> | АсОН                                         | 55.2                     | 4.1      | က                | -27.2                         | 142                                      |                                          |
| 378               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | АсОН                                         | 55.2                     | 4.       | က                | -32.6                         | 142                                      | Via 1:1 complex with 9-methyl-anthracene |
| 379               | $O_2N$ COOCHPh $\longrightarrow O_2N$ COOCHMECH=CHPh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aq Me <sub>2</sub> CO                        | 26.4                     |          |                  | -14                           | 143                                      | H <sub>2</sub> O 25 w%                   |
| 380               | Ph <sub>2</sub> CHSCN + H <sub>2</sub> O → Ph <sub>2</sub> CHOH + HSCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aq Me <sub>2</sub> CO                        | 24                       |          |                  | - 16                          | 143                                      | H <sub>2</sub> O 5 w%                    |
| 381<br>383<br>383 | Ph₂CHSCN → Ph₂CHNCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aq Me <sub>2</sub> CO<br>THF<br>PhH<br>MeCOF | 24<br>113.5<br>116<br>73 |          |                  | - 12<br>- 22<br>- 23<br>- 138 | 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | %× c O.₹                                 |
| 385               | $t$ -BuS <sup>+</sup> Me <sub>2</sub> + H <sub>2</sub> O $\rightarrow$ $t$ -BuOH + Me <sub>2</sub> S + H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> 0                             | 09                       | 2.8      | 9                | 6.6+                          | 144                                      |                                          |
| 386               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ag EtOH<br>Ag EtOH                           | 9 9                      | 2.7      | 7                | +13.1                         | <del>1</del> <del>1</del> <del>1</del>   | H <sub>2</sub> O 90 mol%                 |
| 388               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq EtOH                                      | 9                        | 2.7      | ဖ                | +15.2                         | 44                                       | H <sub>2</sub> O 70 mol %                |
| 380               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq EtOH                                      | 09                       | 2.7      | ဖ                | +13.4                         | 144                                      | H <sub>2</sub> O 60 mol%                 |

| Continued |  |
|-----------|--|
| Ξ         |  |
| Щ         |  |

| 2   |                                                                              | Reaction | Solvent                        | 3° 1       | P. kbars | No. of<br>k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks                     |
|-----|------------------------------------------------------------------------------|----------|--------------------------------|------------|----------|------------------|-------------------------------------|-----|-----------------------------|
|     |                                                                              |          |                                |            |          |                  |                                     |     |                             |
|     |                                                                              |          | Aq p-dioxane                   | 24.9       | 2        |                  | -12.2                               | 147 | H <sub>2</sub> O 91.6 mol % |
| 435 |                                                                              |          | Aq p-dioxane                   | 24.9       | _        |                  | -13.6                               | 147 | H <sub>2</sub> O 95.1 mol%  |
| 436 | $Et_3N + Eti \rightarrow Et_4N^+ + i^-$                                      |          | C <sub>6</sub> H <sub>14</sub> | 20         | 2        | 7                | 58.2                                | 149 |                             |
| 437 |                                                                              |          | PhH                            | 20         | 1.5      | 2                | 50.2                                | 149 |                             |
| 438 |                                                                              |          | МеОН                           | 20         | 5        | 7                | -38.0                               | 149 |                             |
| 439 |                                                                              |          | PhCi                           | 20         | 2        | 7                | -45.1                               | 149 |                             |
| 440 |                                                                              |          | Me <sub>2</sub> CO             | 20         | 2        | 7                | -53.8                               | 149 |                             |
| 441 |                                                                              |          | PhNO <sub>2</sub>              | 20         | 2        | 7                | -30.3                               | 149 |                             |
| 442 |                                                                              |          | MeCN                           | 25         | 1.5      | 9                | -32.1                               | 150 |                             |
| 443 |                                                                              |          | MeOH                           | 25         |          |                  | -32.0                               | 150 |                             |
| 444 |                                                                              |          | MeNO <sub>2</sub>              | 25         |          |                  | -33.8                               | 150 |                             |
| 445 |                                                                              |          | PhH                            | 25         | 6.0      | 4                | -43.5                               | 150 |                             |
| 446 |                                                                              |          | PhNO <sub>2</sub>              | 25         | 6.0      |                  | -30.0                               | 150 |                             |
| 447 |                                                                              |          | p-Xylene                       | 45         | 1.5      | 9                | -49.3                               | 151 |                             |
| 448 |                                                                              |          | p-dioxane                      | 45         |          |                  | -40.5                               | 151 |                             |
| 449 |                                                                              |          | PhBr                           | 25         |          |                  | -35.8                               | 151 |                             |
| 420 |                                                                              |          | PhCI                           | 25         |          |                  | -37.8                               | 151 |                             |
| 451 |                                                                              |          | Me <sub>2</sub> CO             | 20.2       | 2.9      | 6                | -48.7                               | 28  |                             |
| 452 |                                                                              |          | Me <sub>2</sub> CO             | 30         | 2.9      | 6                | 50.4                                | 28  |                             |
| 453 |                                                                              |          | Me <sub>2</sub> CO             | 40         | 2.9      | 6                | -52.4                               | 28  |                             |
| 454 |                                                                              |          | Me <sub>2</sub> CO             | 20         | 2.9      | 6                | -53.8                               | 28  |                             |
| 455 |                                                                              |          | MeOH                           | 30         |          |                  | -22 <sup>h</sup>                    | 152 |                             |
| 456 |                                                                              |          | MeOH                           | 40         |          |                  | -23                                 | 152 |                             |
| 457 |                                                                              |          | MeOH                           | 20         |          |                  | $-24^{h}$                           | 152 |                             |
| 458 |                                                                              |          | MeOH                           | 09         |          |                  | -25"                                | 152 |                             |
| 459 |                                                                              |          | MeOH                           | 0/         |          |                  | -27 h                               | 152 |                             |
| 460 | $Et_3N + Mel \rightarrow Et_3N^+Me + I^-$                                    |          | C <sub>6</sub> H <sub>14</sub> | 20         | 2        | 7                | -54.3                               | 153 |                             |
| 461 |                                                                              |          | PhH                            | 20         | 1.5      | 9                | -44.1                               | 153 |                             |
| 462 |                                                                              |          | Me <sub>2</sub> CO             | 20         | 1.5      | 9                | -43.3                               | 153 |                             |
| 463 | Et <sub>3</sub> N + Bul → Et <sub>3</sub> N <sup>+</sup> Bu + I <sup>-</sup> |          | PhH                            | 20         | 1.5      | 9                | -56.5                               | 153 |                             |
| 464 |                                                                              |          | Me <sub>2</sub> CO             | 20         | 2        | 7                | -55.6                               | 153 |                             |
| 465 |                                                                              |          | PhNO <sub>2</sub>              | 20         | 2        | 7                | -33.8                               | 153 |                             |
| 466 | N + Mel  N*Me + I-                                                           |          | P.H.                           | 30         | 0.8      | 2                | -32.0                               | 154 |                             |
|     |                                                                              |          | = 7                            | ç          | ,        | i                | •                                   |     |                             |
| 467 |                                                                              |          | Ē                              | <b>4</b> 6 |          | o 1              | -34.2                               | 154 |                             |
| 468 |                                                                              |          |                                | g 3        | - ,      | ດເ               | 935.0                               | 40, |                             |
| 404 |                                                                              |          |                                | 2 G        |          | n u              | -36.0<br>-27.3                      | 154 |                             |
| 7.7 |                                                                              |          | HOLL                           | 8 8        |          | י ע              | 7 00-                               | 1 1 |                             |
| 472 |                                                                              |          | E E                            | )<br>(1)   |          | o ka             | -31.5                               | 154 |                             |
| 473 |                                                                              |          | EtOH                           | 09         | -        | . co             | -34.5                               | 154 |                             |
| 474 |                                                                              |          | EtOH-PhH                       | 20         | -        | S                | -32.9                               | 154 | EtOH 10 v%                  |
| 475 |                                                                              |          | EtOH-PhH                       | 20         | -        | 5                | -32.0                               | 154 | EtOH 25 v%                  |
| 476 |                                                                              |          | EtOH-PhH                       | 30         | -        | 2                | -27.7                               | 154 | EtOH 50 v%                  |
| 477 |                                                                              |          | EtOH-PhH                       | 20         | -        | 5                | -29.3                               | 154 | EtOH 50 v%                  |
| 478 |                                                                              |          | EtOH-PhH                       | 20         | -        | 2                | -28.6                               | 154 | EtOH 60 v%                  |
| 479 |                                                                              |          | EtOH-PhH                       | 20         | -        | 2                | -29.7                               | 154 | EtOH 75 v%                  |
|     |                                                                              |          |                                |            |          |                  |                                     |     |                             |

|     | 27  |
|-----|-----|
| - 4 | ~ 1 |

|       |                   |       |       |       |       |                   |                    |       |                                      |        |       |       |       | PhH 80 mol%           | PhH 60 mol%           | PhH 40 mol%           | PhH 20 mol%           |                   |                    |                    |                    |                    |                    |                    |                    |
|-------|-------------------|-------|-------|-------|-------|-------------------|--------------------|-------|--------------------------------------|--------|-------|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 153   | 153               | 155   | 155   | 155   | 155   | 155               | 155                | 155   | 155                                  | 155    | 155   | 155   | 156   | 156                   | 156                   | 156                   | 156                   | 156               | 157                | 157                | 157                | 157                | 157 k.!            | 157                | 157                |
| -39.8 | -25.0             | -39.1 | -35.3 | -29.1 | -24.9 | -23.7             | -34.9              | -32.3 | -25.4                                | -20.4  | -27.2 | -29.2 | -40.1 | -38.8                 | -35.6                 | -32.0                 | -25.9                 | -22.1             | -21.9              | -24.4              | -27.3              | -30.2              | <50                | -23.3              | -23.9              |
| 9     | 7                 | 9     | 9     | 9     | 9     | စ                 | 9 '                | 9     | 9                                    | 9      | 9     | 9     | 4     | 5                     | 5                     | 5                     | 2                     | rc                | 9                  | 9                  | 9                  | 9                  | 8                  | 9                  | 9                  |
| 1.5   | 5                 | 1.5   | 1.5   | 1.5   | 1.5   | 1.5               | 5.                 | 1.5   | 1.5                                  | 1.5    | 1.5   | 1.5   | 4.    | 1.9                   | 1.9                   | 1.9                   | 1.9                   | 1.9               | 5.5                | 5.5                | 5.5                | 5.5                | 5.5                | 5.5                | 5.5                |
| 20    | 20                | 30    | 30    | 30    | 30    | 30                | 30                 | 30    | 30                                   | 30     | 30    | 30    | 90    | 90                    | 20                    | 20                    | 20                    | 20                | 25                 | 25                 | 25                 | 25                 | 56                 | 25                 | 25                 |
| PhH   | PhNO <sub>2</sub> | PhMe  | PhH   | PhCI  | PhBr  | PhNO <sub>2</sub> | Me <sub>2</sub> CO | 丰     | CH <sub>2</sub> CICH <sub>2</sub> CI | i-PrOH | МеОН  | MeCN  | PhH   | PhH-PhNO <sub>2</sub> | PhH-PhNO <sub>2</sub> | PhH-PhNO <sub>2</sub> | PhH-PhNO <sub>2</sub> | PhNO <sub>2</sub> | Me <sub>2</sub> CO |

| _         |
|-----------|
| ъ         |
| 9         |
| 2         |
| .5        |
| ŧ         |
| ≍         |
|           |
|           |
| O         |
| 2         |
| 2         |
| C) II 3   |
| (C)    31 |
| BLE II (C |
| )   =     |

| TABLE II          | TABLE II (Continued)                                                                                                                                                          |                                                   |              |          |               |                         |                   |                        |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|----------|---------------|-------------------------|-------------------|------------------------|
| Š.                | Reaction                                                                                                                                                                      | Solvent                                           | 7, °C        | P, kbars | No. of k data | ΔV*,<br>cm³/mol         | Ref               | Remarks                |
| 506               | $\begin{array}{c} E_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                               | Me <sub>2</sub> CO                                | 25           | 5.5      | 9             | -28.3                   | 157               |                        |
| 507               | ten t                                                                                                                                                                         | Me <sub>2</sub> CO                                | 25           | 5.5      | N             | <b>–35</b>              | 157               |                        |
| 208               | ↑ P4: +                                                                                                                                                                       | Me <sub>2</sub> CO                                | 25           | 5.5      | 9             | -26.5                   | 157               |                        |
| 509               | 0 + i + i + i + i + i + i + i + i + i +                                                                                                                                       | Me <sub>2</sub> CO                                | 25           | 5.5      | 9             | -28.2                   | 157               |                        |
| 510               | $HO(CH_{\mathcal{I},L}^{O}) \longrightarrow \bigvee_{i=1}^{O} + HC_{I}$                                                                                                       | Н₂О                                               | 39.8         | က        | 4             | -5.8                    | 125               |                        |
| 511<br>512        |                                                                                                                                                                               | H <sub>2</sub> O                                  | 49.7<br>54.7 | ကက       | 44.           | -7.2<br>-7.8            | 125<br>125        |                        |
| 513<br>514<br>515 |                                                                                                                                                                               | H <sub>2</sub> O<br>Aq Me <sub>2</sub> CO<br>MeOH | 25.1<br>25.1 | ကကက      | 4 ი ღ ი       | -4.8"<br>-10.5<br>-20   | 125<br>125<br>125 | H <sub>2</sub> O 50 v% |
| 516<br>517        | S SMe - S SMe                                                                                                                                                                 | MeCN                                              | 30           | 5.1.5    | ှ မွ          | -24.9                   | 125<br>155        | $\Delta V = -45.4$     |
| 518               | 人. 人.                                                                                                                                                                         |                                                   | 30           | 1.5      | 9             | - 16.1                  | 155               | $\Delta V = -25.6$     |
| 519               | $\bigcirc \bigcirc $ | МеОН                                              | 32.1         | 1.5      | 4             | 0                       | 125               |                        |
| 520<br>521<br>522 | BuBr + EtO <sup></sup>                                                                                                                                                        | Etoh<br>Etoh<br>Etoh                              | 45<br>45     |          | ппп           | -2.2"<br>-1.7"<br>-2.7" | 163<br>164        |                        |
| 523               | -o-(CH <sub>2</sub> ) <sub>2</sub> OBs                                                                                                                                        | <i>i</i> -ProH                                    | 35           | 4        | 9             | -6.7                    | 165               |                        |
| 524               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                         | -Proh                                             | 35           | 4        | ø             | -7.5                    | 165               |                        |

| $[ArO^-] = 0.15 M$                                                      | [KI] = 0.02 M<br>[KI] = 0.02 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M (0 0 0 M)    | [KI] = 0.02 M      | [KI] = 0.02 M             | [LiCi] = 0.03 M    | [LiCi] = 0.03 M                                 | [LiCi] = 0.03 M         | <i>m</i> ; BF₄⁻ anion           | Ę                                                                         | BuOH 0.965 w % $[BuO^-] = 0.9 M$ | BuOH 0.965 w% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BuOH 0.965 w% $[BuO^-] = 0.9 M$ | BuOH $0.965 \text{ w}$ % [BuO <sup>-</sup> ] = $0.9 \text{ M}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BuOH 0.965 w % $[BuO^-] = 0.9 M$ | BuOH 0.965 w%<br>[BuO <sup>-</sup> ] = 0.9 M | BuOH 0.965 w% [BuO <sup>-</sup> ] = 0.9 M                     | BuOH 0.965 w %<br>[BuO <sup>-</sup> ] = 0.9 M |                                                          |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|---------------------------|--------------------|-------------------------------------------------|-------------------------|---------------------------------|---------------------------------------------------------------------------|----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| 166                                                                     | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167            | 167                | 167                       | 167                | 167                                             | 167                     | 168                             | 168                                                                       | 169                              | 169           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169                             | 169                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169                              | 169                                          | 169                                                           | 169                                           | 170<br>170<br>170                                        |
| -15                                                                     | 9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - <del>[</del> | <u>-</u> റി        | 6-                        | -22                | -27                                             | -25                     | -10.5                           | -5.0                                                                      | -22.5                            | -20.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -22.5                           | -18                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -24                              | -25                                          | -20.2                                                         | -19.2                                         | -2.8<br>-2.6<br>-2.0                                     |
| Ŋ                                                                       | ကက                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) <b>4</b>     | <b>+</b> σ         | 2                         | 1 4                | 4                                               | 4                       | ဗ                               | ю                                                                         | 9                                | 4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                               | 2                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                | ĸ                                            | 9                                                             | 9                                             | 440                                                      |
| 4.1                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (            | ۸ ۵                | ı <del>-</del>            | - 2                | 2                                               | 2                       | 2                               | 2                                                                         | 2.5                              | 1.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                             | 8                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                              | 2                                            | ო                                                             | ဇာ                                            | & & &                                                    |
| 65                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02             | 3 %                | 35                        | 25                 | 25                                              | 25                      | 0                               | 0                                                                         | 78.6                             | 93.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.6                            | 93.2                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.6                             | 93.2                                         | 78.4                                                          | 78.4                                          | 180<br>190<br>200                                        |
| EtOH                                                                    | Me <sub>2</sub> CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Me2CO          | Me <sub>2</sub> CO | OJ-9M                     | Me <sub>2</sub> CO | Me <sub>2</sub> CO                              | Me <sub>2</sub> CO      | CH <sub>2</sub> Cl <sub>2</sub> | CH <sub>2</sub> Cl <sub>2</sub>                                           | &BuOH-DMSO                       | t-BuOH-DMSO   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f-BuOH-DMSO                     | f-BuOH-DMSO                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f-BuOH-DMSO                      | t-BuOH-DMSO                                  | t-BuOH-DMSO                                                   | €-BuOH-DMSO                                   | D <sub>2</sub> O<br>D <sub>2</sub> O<br>D <sub>2</sub> O |
| $Ph(CH_2)_2CI + - \bigcirc O^- \longrightarrow O(CH_2)_2Ph + CI^-$ $Br$ | PCI+   → PM + CI - PSP + T - → PM + CI - PSP + T - → PSP + T - → PSP + T - → PSP + D - PSP + D |                | 710 + 1 + 7-1 + 1  | PCH.C1 + I - → PCH.1 + C1 |                    | .PrI + CI <sup>-</sup> → .PrCI + I <sup>-</sup> | PrBr + Cl⁻ → PrCl + Br⁻ | Rô +                            | $Et_3O'BF_4^{-} + O \longrightarrow Et \longrightarrow OBF_4^{-} + Et_2O$ | → Ong-/                          |               | \rightarrow \right |                                 |                                                                | \rightarrow \right | (Haude                           |                                              | \(\begin{align*} \left\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | X V BinO-                                     | $HCO_2^- + D_2O \rightarrow DCO_2^- + HDO$               |
| 525                                                                     | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 770            | 526                | 530                       | 531                | 532                                             | 533                     | 534                             | 535                                                                       | 536                              | 537           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 538                             | 539                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 540                              | 541                                          | 542                                                           | 543                                           | 544<br>545<br>546                                        |

| ~       |
|---------|
| _       |
| a)      |
| -       |
| ~       |
| -       |
| -=      |
| *       |
| 2       |
| ~       |
| 0       |
|         |
|         |
| $\circ$ |
| 9       |
| 9       |
| 9       |
| 9       |
| 2) = :  |
| ) II 3  |
| $\neg$  |
| ⇉       |
| ⇉       |
| ⇉       |

| Š.  | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solvent          | 7, °C | P, kbars           | No. of k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|--------------------|---------------|-------------------------------------|-----|----------------------------------|
| 547 | $CH_3CO_2^- + D_2O \rightarrow CH_2DCOO^- + HDO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>2</sub> O | 160   | 8                  | 4             | -10.5                               | 170 |                                  |
| 548 | -000 -000 -000 -000 -000 -000 -000 -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н <sub>2</sub> О | 10.1  | 1.5                | 4             | +10.3                               | 171 | $\Delta V = +13.3;$ T-jump       |
|     | $O^cH + O \longrightarrow O \longrightarrow N = N \longrightarrow O \longrightarrow O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |       |                    |               |                                     |     |                                  |
| 549 | $O_2N + O_2O_3 + O_3O_3 + O_3$ | H <sub>2</sub> O | 10.1  | 1.5                | 4             | -5.1                                | 171 | T-jump                           |
|     | N=N-N-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |       |                    |               |                                     |     |                                  |
| 550 | $O_2N - CH_2NO_2 + HN - VMB_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mesitylene       | 30    | 1.7                | 9             | -13.2                               | 172 | $\Delta V = -15.9$               |
|     | $\longrightarrow \left[O_2N - \left(O_2N - CHNO_2\right)\right] H_2N - \left(O_2N - CHNO_2\right)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |       |                    |               |                                     |     |                                  |
| 551 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PhMe             | 30    | 1.7                | 9             | -17.8                               | 172 | $\Delta V = -25.5$               |
| 552 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-Xylene         | 30    | 1.7                | 9             | -14.6                               | 172 | $\Delta V = -21.3$               |
| 253 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PhOMe            | 30    | 1.3                | 2             | -16.3                               | 172 | $\Delta V = -29.3$               |
| 554 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PhCi             | 30    | 1.7                | 9             | -13.0                               | 172 | $\Delta V = -21.9$               |
|     | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |       |                    |               |                                     |     | ,                                |
| 555 | PhCH <sub>2</sub> CH <sub>2</sub> Cl + ( ) → PhCH=CH <sub>2</sub> + ( ) → OH + Cl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Етон             | 65    | <del>.</del><br>4. | ς.            | -12                                 | 166 | $[ArO^{-}] = 0.15 M$             |
| 556 | Ph Br + $^{1}$ -PrO $^{-}$ $\rightarrow$ PhC==CH + $^{1}$ -PrOH + Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>i</i> -PrOH   | 26    | 4.                 | 9             | 9                                   | 166 | [PrO <sup>-</sup> ] = 0.182<br>M |
| 557 | Ph + i-PrO → PhC=CH + i-PrOH + Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -Proh            | 118   | 4.1                | 9             | ا<br>ا                              | 166 | $[PrO^{-}] = 0.147$              |
| 558 | Br Br + MeO → HC≡CBr + MeOH + Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | МеОн             | 37    | Ξ                  | 2             | - 5                                 | 166 | [MeO <sup>-</sup> ] = 0.106      |
| 559 | PhSO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Cl + AcO <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Еюн              | 20    | 1.4                | 4             | <u>-</u>                            | 166 | $[AcO^-] = 0.05 \mathrm{M}$      |
|     | MeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |       |                    |               |                                     |     |                                  |
| 260 | ( → ( + 1-Buo- → ( ) → ( ) + 1-BuoH + Meo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f-BuOH           | 82    | 1.4                | 4             | +3                                  | 166 | $[BuO^{-}] = 0.314$              |

| [BuO <sup>-</sup> ] = 0.405<br>M<br>In the<br>presence<br>of crown ether |                                                                                                                                                                                                                                                                                          | H <sub>2</sub> O 90 mol%<br>H <sub>2</sub> O 90 mol%<br>H <sub>2</sub> O 76 mol%<br>H <sub>2</sub> O 58 mol%<br>H <sub>2</sub> O 37 mol%<br>H <sub>2</sub> O 24 mol%<br>H <sub>2</sub> O 90 mol%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A2 O mol % H <sub>2</sub> O 60 mol % [AcOH] = 0.1 M $\Delta V = +14$                                      | [KOH] = 0.25 M<br>H <sub>2</sub> O 17%<br>[KOH] = 0.25 M<br>[H <sub>2</sub> O] = 5.56 M<br>[KOH] = 0.25 M<br>[KOH] = 0.25 M<br>[KOH] = 0.25 M<br>[KOH] = 0.21 M<br>[KOH] = 0.01 M<br>[KOH] = 0.01 M<br>[KOH] = 0.01 M |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 166                                                                      | 163<br>163<br>166                                                                                                                                                                                                                                                                        | 166<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | 175<br>176<br>176<br>176<br>176<br>176<br>176<br>177<br>176                                                                                                                                                           |
| + 15                                                                     | +0.9"<br>+3.5"<br>+6                                                                                                                                                                                                                                                                     | + 6.6<br>+ 6.6<br>+ 7.7<br>+ | +3.1<br>+8.0<br>+12°<br>+17.7                                                                             | -5°<br>-6.2<br>-6.1<br>-6.1<br>-6.9<br>+7.1<br>+6.9                                                                                                                                                                   |
| 8                                                                        | <b>ოო ო</b>                                                                                                                                                                                                                                                                              | 4 W 4 4 4 4 4 4 4 4 4 4 6 4 4 6 4 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44 rv rv r                                                                                                | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                               |
| 4.1                                                                      | <del></del>                                                                                                                                                                                                                                                                              | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8:1. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.                                                         | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                               |
| 25                                                                       | 45<br>45<br>15                                                                                                                                                                                                                                                                           | 25 8 8 9 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>36<br>55<br>55<br>56                                                                                | 25<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                      |
| ₹BuOH                                                                    | Etoh<br>Etoh<br>H <sub>2</sub> O                                                                                                                                                                                                                                                         | H <sub>2</sub> O<br>H <sub>2</sub> O<br>H <sub>2</sub> O<br>H <sub>2</sub> O<br>A <sub>2</sub> ETOH<br>A <sub>2</sub> ETOH<br>A <sub>3</sub> ETOH<br>A <sub>4</sub> ETOH<br>A <sub>4</sub> ETOH<br>A <sub>5</sub> ETOH<br>A <sub>6</sub> ETOH<br>A <sub>7</sub> ETOH<br>A <sub>7</sub> ETOH<br>A <sub>8</sub> ETOH<br>A <sub>8</sub> ETOH<br>A <sub>8</sub> ETOH<br>A <sub>8</sub> ETOH<br>A <sub>8</sub> ETOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq Meoh<br>Aq Meoh<br>H <sub>2</sub> O<br>H <sub>2</sub> O                                                | H <sub>2</sub> O<br>Aq MeOH<br>Aq MeOH<br>MeOH<br>Aq MeOH                                                                                                                                                             |
|                                                                          | BuBr + EtO <sup></sup> $\rightarrow$ C <sub>4</sub> H <sub>8</sub> + EtOH + Br <sup></sup><br>$\not\models$ BuBr + EtO <sup></sup> $\rightarrow$ C <sub>4</sub> H <sub>8</sub> + EtOH + Br <sup></sup><br>MeCOCH <sub>2</sub> C(OH)Me <sub>2</sub> $\longrightarrow$ 2Me <sub>2</sub> CO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PhCH(OH)CN -> PhCHO + HCN  AGO  COO -  COO -  Br  CICH.CONHANL -> No. + No. 1. + CI - + ACO - + ACONHANL. | 2iPrcho - Prch(OH)Ch(Et)ChO                                                                                                                                                                                           |
| 561                                                                      | 562<br>563<br>564                                                                                                                                                                                                                                                                        | 565<br>566<br>567<br>568<br>569<br>571<br>572<br>573<br>575<br>577<br>578<br>578<br>578<br>578<br>578<br>577<br>578<br>578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 583<br>584<br>585<br>586<br>586                                                                           | 588<br>589<br>590<br>591<br>592<br>593                                                                                                                                                                                |

| <          | -                                       |
|------------|-----------------------------------------|
| >          | ž                                       |
| 1          | ٤                                       |
| -          | 2                                       |
| ÷          | 2                                       |
| 6          | =                                       |
| 7          |                                         |
|            |                                         |
| ď          | ξ                                       |
| ζ          | ٤                                       |
| Š          | ٤                                       |
| 2          | 3                                       |
| <u>`</u>   | 3                                       |
| )<br>= u = | ֡֝֝֝֝֝֟֝֝֝֟֝֝֟֝֝֟֝֓֓֓֓֟֝֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓ |
| <u> </u>   | 3                                       |

| NO. | Reaction                                                                                           | Solvent               | 7, °C    | P, kbars    | No. of k data | $\Delta V^*$ , cm $^3$ /mol | Ref | Remarks                                                                |
|-----|----------------------------------------------------------------------------------------------------|-----------------------|----------|-------------|---------------|-----------------------------|-----|------------------------------------------------------------------------|
| 595 |                                                                                                    | Ад МеОН               | 40       | _           | 2             | +4.8                        | 176 | H <sub>2</sub> O 21 mol%<br>[KOH] = 0.01 M<br>H <sub>2</sub> O 51 mol% |
|     |                                                                                                    |                       |          |             |               |                             |     |                                                                        |
| 596 | 2 Florid                                                                                           | Етон                  | 0.7      | 2           | c)            | 7.4                         | 177 | [EtONa] = 0.04<br>M                                                    |
| 265 |                                                                                                    | ЕЮН                   | 8.6      | 2           | 2             | -7.8                        | 177 | $\Delta V = -15.2$ [EtONa] = 0.04 M                                    |
|     |                                                                                                    |                       |          |             |               |                             |     | $\Delta V = -13.7$                                                     |
| 598 | j-Bu <sub>2</sub> CO — ≱ j-Bu <sub>2</sub> CHOH<br>BuoNa                                           | BuOH                  | 66       | 1.2         | 4             | -12.9                       | 178 | $[BuONa] = 1.8 \mathrm{m}$                                             |
| 599 |                                                                                                    | BuOH                  | 100.3    | 1.5         | 4             | -12.6                       | 178 | $[BuONa] = 2.0 \mathrm{m}$                                             |
| 009 |                                                                                                    | BuOH                  | 105.4    | - 3         | 5             | -10.0                       | 178 | [BuONa] = 2.1  m                                                       |
| 601 | $AcOEt + OH^- \rightarrow AcO^- + EtOH$                                                            | Č Š                   | 20<br>20 | 8.28        | ပ က           | -7.6<br>-5.6                | 180 |                                                                        |
| 603 |                                                                                                    | H <sub>2</sub> O      | 30       | 8.1         | က             | -6.4                        | 180 |                                                                        |
| 604 |                                                                                                    | Aq Me <sub>2</sub> CO | 10       | ဇ           | 9             | -16.8                       | 179 | H <sub>2</sub> O 57.2 w%                                               |
| 605 |                                                                                                    | Aq Me <sub>2</sub> CO | 0 9      | ကပ          |               | -13.1                       | 179 | H <sub>2</sub> O 69 ₩%                                                 |
| 909 | □○□ + =○□ + =□○ + =□ + =□ + =□ + =□ + =□                                                           | Aq Me <sub>2</sub> CO | 2 %      | ω α<br>-    |               | n ω<br>                     | 180 | 120 / 3.0 W %                                                          |
| 709 | ACOPII + OH                                                                                        | O. T.                 | 200      |             | + 4           | -5.6                        | 180 |                                                                        |
| 609 | $AcO-\dot{t}Bu + OH^- \rightarrow AcO^- + \dot{t}BuOH$                                             | 0°H                   | 20       | 8.1         | 4             | -6.3                        | 180 |                                                                        |
| 610 | $AcOC_5H_{11} + OH^- \rightarrow AcO^- + C_5H_{11}OH$                                              | H <sub>2</sub> O      | 20       | 8.1         | 2             | -5.8                        | 180 |                                                                        |
| 611 | Me <sub>2</sub> C==CHAc + PhSH> Me <sub>2</sub> C(SPh)CH <sub>2</sub> Ac<br><sub>MeO</sub> -       | Меон                  | 30       | 1.4         | 5             | -20                         | 181 | $\Delta V = -22$ $[MeO^{-}] = 0.025$                                   |
| 612 | Me₂C==CHAc + PhSH — ➤ Me₂C(SPh)CH₂Ac                                                               | Аф ЕŧОН               | 30       | 1.1         | 2             | -19                         | 181 | $\Delta V = -22$ $H_2O 45 \text{ V}$ $[OH^{-1}] = 0.025 \text{ M}$     |
| 613 | (A) (A) + HOCH(Me)CH <sub>2</sub> OPh PHOCS MECH(OH)CH <sub>2</sub> OCH(Me)CH <sub>2</sub> OPh (C) | Neat                  | 70       | -           | 4             | -53.0                       | 182 | A:B = 1.13:1<br>B:C = 1000:5                                           |
| 614 |                                                                                                    | Neat                  | 02       | -           | က             | -55.1                       | 182 | A:B = 5:1 B: $C = 4000.40$                                             |
| 615 |                                                                                                    | Neat                  | 70       | <del></del> | က             | -58.5                       | 182 | B.C = 1000.40<br>A.B = 5.1<br>B.C = 1000.20                            |
| 616 | (1) + OH- → HO + CI                                                                                | Aq EtOH               | 25       | 9           | 7             | +5                          | 183 | H <sub>2</sub> O 20 v%                                                 |
| 617 | MeOCMe <sub>2</sub> CH <sub>2</sub> Ac ──➤ Me <sub>2</sub> C≔CHAc + MeOH<br>H <sup>+</sup>         | МеОН                  | 30       | 7           | 2             | -13                         | 181 | $[H_2SO_4] = 0.05$                                                     |
| 618 | месн(он)сн <sub>2</sub> соон + + + + 20 + 200н                                                     | H <sub>2</sub> O      | 83       | 1.4         | က             | -15.0                       | 185 |                                                                        |
| 619 |                                                                                                    | H <sub>2</sub> O      | 88.4     | 2.1         | 2             | -14.6                       | 185 |                                                                        |
| 620 | $CH_2(OH)CH_2COOH \longrightarrow CH_2 = CHCOOH + H_2O$                                            | $H^ZO$                | 80       | 1.4         | 4             | 9.6—                        | 186 |                                                                        |

| 621<br>622 |                                                                                                                                                        | 0, H                                 | 82         | 1.7             |     | -10.4<br>-11.1 | 186<br>186 |                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------------|-----|----------------|------------|--------------------------------------------|
| 623        | MeCH(OH)CH <sub>2</sub> CHO                                                                                                                            | H <sub>2</sub> O                     | 30         | 2.1             | 4   | 5.8            | 187        |                                            |
| 624        |                                                                                                                                                        | H <sub>2</sub> O                     | 35         | 2.1             | 5   | -5.7           | 187        |                                            |
| 625        | $MeCH = CH_2 + H_2O \longrightarrow PPOH$                                                                                                              | H <sub>2</sub> O                     | 180        | 4.9             | 9   | -21.9          | 188        | $p \ge 0.3$ kbars                          |
| 626        | ш.                                                                                                                                                     | H <sub>2</sub> O                     | 180        | 4.9             | 9   | -30.7          | 188        | $p \ge 0.3$ kbars                          |
| 627        | CH2==CHC00H + H20> HOCH2CH2COOH                                                                                                                        | H <sub>2</sub> 0                     | 80         | 1.4             | 4   | -14.0          | 186        |                                            |
| 628<br>629 |                                                                                                                                                        | Н <sub>2</sub> О<br>Н <sub>2</sub> О | 85<br>90   | 1.7             | 2 2 | -14.4<br>-15.8 | 186<br>186 |                                            |
| 630        | + H <sub>2</sub> O H MeCH(OH)CH <sub>2</sub> CHO                                                                                                       | H <sub>2</sub> O                     | 30         | 2.1             | 4   | -19.8          | 187        |                                            |
| 631        | CHO                                                                                                                                                    | H <sub>2</sub> O                     | 35         | 2.1             | 5   | -19.6          | 187        |                                            |
| 632        | + H <sub>2</sub> O H + MeCH(OH)CH <sub>2</sub> COOH                                                                                                    | H <sub>2</sub> O                     | 83         | 1.4             | ဗ   | -17.9          | 185        |                                            |
| 633        |                                                                                                                                                        | H <sub>2</sub> O                     | 88.4       | 2.1             | 5   | -18.1          | 185        |                                            |
| 634        | Me <sub>2</sub> C=CHAc + H <sub>2</sub> O <del>→ M</del> e <sub>2</sub> C(OH)CH <sub>2</sub> Ac                                                        | <b>Н</b> 2О                          | 30         | <del>1</del> .4 | 2   | -14.5          | 181        | $\Delta V = -9$ [HCl] = 0.49 M             |
| 635        | Me <sub>2</sub> C <sup></sup> CHAc + MeOH → Me <sub>2</sub> C(OMe)CH <sub>2</sub> Ac                                                                   | МеОН                                 | 30         | 1.4             | 5   | -23            | 181        | $\Delta V = -11$ $[H_5SO_4] = 0.05$        |
| 636        | $Me_2C$ — $CHAc + NH_3 \rightarrow Me_2C(NH_2)CH_2Ac$                                                                                                  | H <sub>2</sub> O                     | 30         | 4.1             | ស   | 41 5           | 181        | E = 10 €                                   |
| 700        |                                                                                                                                                        | MeCO                                 | <u>0</u> 5 | <del>4</del> .  | ი   | 77             | 181        | $\Delta V \equiv -9$                       |
| 638        | Q + H <sub>2</sub> O H→ HOCH(Me)CH,CH <sub>2</sub> OH                                                                                                  | Н₂О                                  | 25         | 2.5             | 7   | -11.5          | 189        |                                            |
| 639        |                                                                                                                                                        | H <sub>2</sub> O                     | 40         | 2.5             | 7   | 6.6—           | 189        |                                            |
| 640        | $\longrightarrow \qquad \qquad$ | Н <sub>2</sub> О                     | 25         | 2.5             | 7   | -11.3          | 189        |                                            |
| 641        |                                                                                                                                                        | H <sub>2</sub> O                     | 40         | 2.5             | 7   | -9.7           | 189        |                                            |
| 642        | + MeOH + MeCH(OH)CH2OMe + MeCH(OMe)CH2OH                                                                                                               | МеОН                                 | 25         | 1.5             | 4   | <b>-</b> 9.4   | 190        | $[H^+] \simeq 5 \times 10^{-4}  M$         |
| 643        | CH <sub>2</sub> OH + MeOH H MeOCH <sub>3</sub> CH(OH)CH <sub>2</sub> OH + HOCH <sub>2</sub> CH(OMe)CH <sub>2</sub> OH                                  | МеОН                                 | 25         | 2.5             | 9   | -14.7          | 190        | $[H^+] \simeq 5 \times 10^{-4} \mathrm{M}$ |
| 644        | CH <sub>2</sub> Cl + MeOH + MeOCH <sub>2</sub> CH(OH)CH <sub>2</sub> Cl + HOCH <sub>2</sub> CH(OMe)CH <sub>2</sub> Cl                                  | МеОн                                 | 25         | 2.5             | 9   | 1.6-           | 190        | $[H^+] \simeq 5 \times 10^{-4} \mathrm{M}$ |
| 645        | CH <sub>2</sub> Br + MeOH + MeOCH <sub>2</sub> CH(OH)CH <sub>2</sub> Br + HOCH <sub>2</sub> CH(OMe)CH <sub>2</sub> CI                                  | МеОН                                 | 25         | 2.5             | 9   | -10.7          | 190        | $[H^+] \simeq 5 \times 10^{-4} M$          |

|                      | roito o a |
|----------------------|-----------|
| TABLE II (Continued) | 1         |

| No. | Reaction                                                                                                          | Solvent                     | T, °C | P, kbars | No. of k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|----------|---------------|-------------------------------------|-----|-------------------------------------------------------------------------------------------------|
| 646 | $\bigvee_{0} + HNO_{3} \longrightarrow HOCH_{2}CH_{2}ONO_{2}$                                                     | N-Me-2-pyrrolidone          | 25    | 2        | 5             | -17.3                               | 191 | $[HNO_3] = 0.05M$                                                                               |
| 647 | $\begin{array}{c} + \text{HNO}_3 \longrightarrow \text{HO(CH}_{?})_3 \text{ONO}_2 \\ \longrightarrow \end{array}$ | N-Me-2-pyrrolidone          | 25    | 8        | 2             | -14.2                               | 191 | $[HNO_3] = 0.10 M$                                                                              |
| 648 | CH <sub>2</sub> CI + HNO <sub>3</sub> > O <sub>2</sub> NOCH <sub>2</sub> CH(OH)CH <sub>2</sub> CI                 | N-Me-2-pyrrolidone          | 25    | 8        | 5             | -15.0                               | 191 | $[HNO_3] = 0.10  M$                                                                             |
| 649 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                              | N-Me-2-pyrrolidone          | 25    | a        | 2             | -15.0                               | 191 | [Pic] = 0.20 M                                                                                  |
| 650 | $NO_2$ $NO_2$ $NO_2$ MeCHO + 2EtOH $\rightarrow$ MeCH(OEt) <sub>2</sub> + H <sub>2</sub> O                        | Neat                        | 09    | ო        | ღ             | 6.9                                 | 192 | EtOH 67 mol%                                                                                    |
| 651 |                                                                                                                   | Neat                        | 20    | rc.      | က             | -6.3                                | 192 | F 2 1 Kbar<br>EtOH 67 mol %<br>D > 1 kbcr                                                       |
| 652 |                                                                                                                   | Neat                        | 40    | 2        | က             | -5.6                                | 192 | F = 1 NOa!<br>EtOH 67 mol %<br>P > 1 kbar                                                       |
| 653 |                                                                                                                   | Neat                        | 40    |          |               | -7.0                                | 192 | EtOH 80 mol%                                                                                    |
| 654 |                                                                                                                   | Neat                        | 40    |          |               | -6.0                                | 192 | F = 1 kbar<br>[EtOH] = 13 M<br>[MeCHO] = 4.34                                                   |
| 655 |                                                                                                                   | MeCHO-EtOH-H <sub>2</sub> O | 40    |          |               | <b>-5.4</b>                         | 192 | M $P \ge 1 \text{ kbar}$ [EtOH] = 12.7 M [MeCHO] = 4.24                                         |
| 929 |                                                                                                                   | MeCHO-EtOH-H <sub>2</sub> O | 40    |          |               | -6.0                                | 192 | M $[H_2O] = 1.12 M$ $P \ge 1 \text{ kbar}$ $[EtOH] = 12.7 M$ $[MeCHO] = 4.22$                   |
| 657 |                                                                                                                   | MeCHO-EtOH-H <sub>2</sub> O | 40    |          |               | -5.9                                | 192 | M $[H_2O] = 1.44 \text{ M}$ $P \ge 1 \text{ kbar}$ $[EtOH] = 12.2 \text{ M}$ $[MeCHO] = 4.08$ M |
| 658 |                                                                                                                   | MeCHO-EtOH-H <sub>2</sub> O | 40    |          |               | 6.9                                 | 192 | $[H_2O] = 3.36 \text{ M}$<br>$P \ge 1 \text{ kbar}$<br>[EtOH] = 9.96  M<br>[MeCHO] = 3.32<br>M  |
| 659 |                                                                                                                   | MeCHO-EtOH-H <sub>2</sub> O | 40    |          |               | 1.7-                                | 192 | [120] — 13 M<br>P ≥ 1 kbar<br>[EtOH] = 9.69 M<br>[MeCHO] = 3.23<br>M                            |

| ned)   |  |
|--------|--|
| Contir |  |
| Ĕ      |  |
| щ      |  |
| 鱼      |  |

| TABLE | TABLE II (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                   | :              |                  |                                     |            |                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------|------------------|-------------------------------------|------------|--------------------------|
| S     | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solvent                     | 1, °C             | P, kbars       | No. of<br>k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref        | Remarks                  |
| 869   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | 5                | -14                                 | 196        | H <sub>2</sub> O 40 v%   |
| 669   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | 2                | -15 <sub>h</sub>                    | 196        | H <sub>2</sub> O 30 v%   |
| 200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | 2                | -15.9                               | 196        | H <sub>2</sub> O 20 v%   |
| 701   | H000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> 0            | 30                | 8              | 9                | 9.6-                                | 197        |                          |
|       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                   |                |                  |                                     |            |                          |
| 702   | $O_2N$ $\longrightarrow$ $O_2N$ $+ H_2O$ $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aq Me <sub>2</sub> CO       | 26.4              |                |                  | -14                                 | 143        | H <sub>2</sub> O 25 w%   |
|       | $O_2N$ COOH + HOCHPICH=CHMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                   |                |                  |                                     |            |                          |
| 703   | Acochph, + H <sub>2</sub> O → Acoh + Ph <sub>2</sub> CHOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq Me <sub>2</sub> CO       | 96.2              |                |                  | -18                                 | 143        | H <sub>2</sub> O 25 w%   |
| 704   | ACOEL + H <sub>2</sub> O → ACOH + EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EtoH<br>F10H                | 08 08             | æ Ç            | 7                | -34.3<br>-22.3                      | 198<br>198 |                          |
| 902   | ACNH- $t$ -Bu + H <sub>2</sub> O $\longrightarrow$ ACNH <sub>2</sub> + $t$ -BuOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> O            | 80.2              | -              | . 2              | -1.9                                | 199        | $[HCI] = 0.2 \mathrm{M}$ |
| 707   | -F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH                          | 80.0              | -              | ĸ                | ر<br>بر                             | 190        |                          |
| 208   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O <sup>2</sup> H            | 80.2              |                | ט עס             | 6.9                                 | 199        | [HCI] = 0.4 M            |
| 400   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> O            | 80.2              | · <del>-</del> | 2.               | -9.2                                | 199        | [HCI] = 1 M              |
| 710   | $(EiO)_2CH_2 + H_2O \longrightarrow 2EiOH + HCHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H <sub>2</sub> O            | 39.9              | -              | S                | 0.0                                 | 196        |                          |
| 711   | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aq p-dioxane                | 39.9              | -              | 2                | -14                                 | 196        | %^O 60 ^H                |
| 712   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | 2                | -54                                 | 196        | H₂O 80 v%                |
| 713   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | 2                | -34                                 | 196        | H₂O 70 v%                |
| 714   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | S.               | -4 h                                | 196        | % 09 0 <sup>2</sup> H    |
| 715   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | -              | ç                | 9—                                  | 196        | H <sub>2</sub> O 50 v%   |
| 716   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq p-dioxane                | 39.9              | <del>-</del> , | က၊               | 49-                                 | 196        | H <sub>2</sub> O 40 v%   |
| 71/   | HO46 4- 0-H + 0-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aq <i>p</i> -dioxane<br>H₂∩ | 88.80<br>200      | - m            | טיט              | -10.0<br>-10.0                      | 200        | n <sub>2</sub> O 20 V 70 |
| 2     | T20 - 120 - 7 24101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                           | }                 | >              | þ                | 2                                   | )<br>)<br> |                          |
| 719   | Et <sub>2</sub> O + H <sub>2</sub> O → ≥ 2EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H <sub>2</sub> 0            | 200               | က              | 5                | +1.0                                | 200        | [Nai] = 0.2 M            |
| 720   | sucrose + H <sub>2</sub> O → glucose + fructose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> O            | 25                | 1.5            | S.               | +6.0                                | 09         |                          |
|       | \<br>\<br>\<br>\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                   |                |                  |                                     |            |                          |
| 721   | $\left( \begin{array}{c} \\ \\ \\ \end{array} \right) = N_1 N_1 N_1 + \frac{1}{1 + 1} N_2 + \frac{1}{1 + 1}$ | Aq EtOH                     | 24.7              | 2.9            | 4                | -2.5                                | 201        | H <sub>2</sub> O 4 v%    |
| 722   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq EtOH                     | 24.7              | 2.9            | 4                | -7.24                               | 201        | H <sub>2</sub> O 4 v%    |
|       | Br Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                   |                |                  |                                     |            |                          |
| 723   | $^{c}HN-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aq EtOH                     | 25                | 2.9            | 4                | $-10.7^{p}$                         | 202        | H <sub>2</sub> O 15 v%   |
| 724   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq EtOH                     | 25                | 2.9            | 4                | -0.49                               | 202        | H <sub>2</sub> O 15 v%   |
| 725   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq EtOH                     | 30                | 2.9            | 4                | $-10.0^{p}$                         | 202        | H <sub>2</sub> O 15 v%   |
| 726   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ag EtOH                     | 06 0 <del>4</del> | 5.5<br>0<br>0  | 4 4              | -0.54                               | 202<br>203 | H <sub>2</sub> O 15 v%   |
| 171   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1011                        | 2                 | ;              | •                | <u>.</u>                            | 707        | 20 00                    |

| H <sub>2</sub> O 15 v% | H <sub>2</sub> O 4 v%                                                                                                                                                                                                                                     | H <sub>2</sub> O 4 v%, p | H <sub>2</sub> O 15 v%, p                                                                                             | H <sub>2</sub> O 15 v%, p | HCI catalyzed                                               | HCI catalyzed    | HCI catalyzed    | H <sub>2</sub> O 52.5 w%                        | 720 44.2 W %                                                                                         | $\Delta V = +19$ |                                              | $\Delta V = +1$ | Direct                    | rearrangement | Direct<br>rearrangement | $\Delta V = +20$ Direct rearrangement |
|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|------------------|------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|-----------------|---------------------------|---------------|-------------------------|---------------------------------------|
| 202                    | 203                    | 203                    | 204                    | 204                    | 205                    | 201                                                                                                                                                                                                                                                       | 201                      | 203                                                                                                                   | 203                       | 206                                                         | 206              | 206              | 206                                             | 20e                                                                                                  | 206              | 206<br>206                                   | 206             | 206                       | }             | 206                     | 206                                   |
| +0.24                  | -12 <i>p</i>           | -12 <sup>p</sup>       | -6.8 p                 | -3.24                  | -8.5                   | -40                                                                                                                                                                                                                                                       | 50                       | +2                                                                                                                    | +5                        | +8.4                                                        | +7.6             | +6.8             | +6.1                                            | +2.3<br>+2.3                                                                                         | +2.1             | +1.9<br>-15.5                                | -17.6           | - 18.6<br>44              |               | -34                     | -28                                   |
| 4                      | 4                      | 4                      | 4                      | 4                      | 4                      | 4                                                                                                                                                                                                                                                         | 4                        | 4                                                                                                                     | 4                         | 4                                                           | 4                | 4                | s r                                             | ာက                                                                                                   | 4                | <b>4</b> W                                   | 9               | ഗത                        | 1             | 4                       | 4                                     |
| 2.9                    | 8                      | 2                      | 1.5                    | 1.5                    | 1.5                    | ဇ                                                                                                                                                                                                                                                         | ဗ                        | 2                                                                                                                     | 2                         | 1.4                                                         | 1.4              | 1.4              | 4. 4                                            | 0.5                                                                                                  | -                | 0.5                                          | <b>-</b>        | 1<br>0.5                  |               | -                       | -                                     |
| 40                     | Ŋ                      | 10                     | 25                     | 25                     | 25                     | 24.7                                                                                                                                                                                                                                                      | 24.7                     | S                                                                                                                     | 10                        | 09                                                          | 65               | 02               | 25<br>25                                        | 35                                                                                                   | 40               | 45<br>35                                     | 40              | 45<br>35                  |               | 40                      | 45                                    |
| Aq EtOH                                                                                                                                                                                                                                                   | Ад ЕtОН                  | Aq EtOH                                                                                                               | Aq EtOH                   | H <sub>2</sub> O                                            | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> O-H <sub>2</sub> SO <sub>4</sub> | AcOH                                                                                                 | AcOH             | AcOH<br>AcOH                                 | AcOH            | AcOH                      |               | АсОН                    | Асон                                  |
| OMe MeO OMe            |                        | 5                      | CHINHH C H->N-H->NH2   | ОМе                    | INH E. H.              | $\left\langle \bigcirc \right\rangle - N + INH + \left\langle \bigcirc \right\rangle \qquad \left\langle \bigcirc \right\rangle + \left\langle \bigcirc \right\rangle \qquad \left\langle \bigcirc \right\rangle = N - N - N - N - N - N - N - N - N - N$ | Cwe MeO OM6 MO           | $\bigcirc \longrightarrow \bigvee_{H^{+}} \langle \bigcirc \longrightarrow NH, + \langle \bigcirc \longrightarrow N=$ |                           | Mey Me <sub>2</sub> H- 1-Bucome + H <sub>2</sub> O<br>OH OH |                  |                  |                                                 | Ph <sub>2</sub> C—CPh <sub>2</sub> H' Ph <sub>2</sub> C—CPh <sub>3</sub> + H <sub>3</sub> O<br>OH OH |                  | Ph,C—CPh <sub>2</sub> → PhCOCPh <sub>3</sub> |                 | Ph,ç—çPh,→ PhCOCPh, + H,O | _             |                         |                                       |
| 728                    | 729                    | 730                    | 731                    | 732                    | 733                    | 734                                                                                                                                                                                                                                                       | 735                      | 736                                                                                                                   | 737                       | 738                                                         | 739              | 741              | 742                                             | 743                                                                                                  | 744              | 746                                          | 747             | 749                       |               | 750                     | 751                                   |

| (Continued) |  |
|-------------|--|
| =           |  |
| TABLE       |  |

| 2    | Reaction                                                                                                               | Solvent                              | r, °C | P, kbars | No. of k data | $\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks                                                                     |
|------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|----------|---------------|-------------------------------------|-----|-----------------------------------------------------------------------------|
|      | CINAC HNAC                                                                                                             |                                      |       |          |               |                                     |     |                                                                             |
| 752  |                                                                                                                        | н <sub>2</sub> о                     | 15    | 2.1      | ო             | +4.0                                | 36  |                                                                             |
| 753  | •                                                                                                                      | H <sub>2</sub> O                     | 25    | 2.1      | ဗ             | +5.3                                | 36  |                                                                             |
| 754  |                                                                                                                        | Н2О                                  | 35    | 2.1      | က             | +6.5                                | 36  |                                                                             |
| 755  | AcOH + EtOH → AcOEt + H <sub>2</sub> O                                                                                 | EtOH                                 | 80    | æ        |               | -32.6                               | 198 | Self-catalyzed                                                              |
| 756  | $t$ -Buccooh + Etoh $\rightarrow t$ -Buccooet + H <sub>2</sub> 0                                                       | EtOH                                 | 80    | 20       | 7             | -26.2                               | 198 | Self-catalyzed                                                              |
| 757  | Ph <sub>3</sub> SnCH <sub>2</sub> C==CH → Ph <sub>3</sub> SnCH=C==CH <sub>2</sub>                                      | CHCl3-MeOH                           | 37    | 1.2      | 80            | -44                                 | 207 | CHCl <sub>3</sub> /MeOH =                                                   |
| 758  |                                                                                                                        | C <sub>5</sub> H <sub>5</sub> N-PhMe | 37    | 8.0      | 7             | -32                                 | 207 | $8/2$ $C_5H_5N/PhMe =$                                                      |
| 759  | FPBr + Ag <sup>+</sup> + H <sub>2</sub> O → FPOH + AgBr + H <sup>+</sup>                                               | Aq EtOH                              | 25    | 2        | 4             | -16                                 | 167 | 16.7/83.3<br>H <sub>2</sub> O 40 v%;                                        |
| 760  | PhCH <sub>2</sub> Cl + Hg <sup>2+</sup> + H <sub>2</sub> O → PhCH <sub>2</sub> OH + HgCl <sub>2</sub> + H <sup>+</sup> | Aq p-dioxane                         | 25    | -        | က             | <b>9</b>                            | 167 | [AgNO <sub>3</sub> ] =<br>0.013 M<br>H <sub>2</sub> O 25 v%;                |
| 761  | $PrBr + Hg^{2+} + H_2O \to PrOH + HgBr_2 + H^+$                                                                        | Aq <i>p-</i> dioxane                 | 52    | -        | ო             | <b>8</b> 9                          | 167 | [Hg(NO <sub>3</sub> ) <sub>2</sub> ]<br>= 0.01 M<br>H <sub>2</sub> O 25 v%; |
|      |                                                                                                                        |                                      |       |          |               |                                     |     | $[Hg(NO_3)_2]$<br>= 0.012 M                                                 |
| 76.9 | Ħ<br>L                                                                                                                 |                                      | į     | Ċ        |               | !                                   | ;   |                                                                             |
| 707  | (NO.14 T MECH T (NO.14 T OME                                                                                           | MeOH                                 | Ç2    | 2.1      | ဖ             | -16.7                               | 208 |                                                                             |
| 263  | PhH + CH₂==CHCH₃                                                                                                       | PhNO <sub>2</sub>                    | 20    | 8        | 7             | ,>0                                 | 34  | $[FeCl_3] = 6.2$                                                            |
| 764  |                                                                                                                        | PhNO <sub>2</sub>                    | 20    | -        | က             | 0<'                                 | 34  | $\times 10^{-3} \text{ M}$ [FeCl <sub>3</sub> ] = 1.63                      |
| 765  | PhCOOH + $Ph_2CN_2 \rightarrow PhCOOCHPh_2 + N_2$                                                                      | Bu <sub>2</sub> O                    | 17.1  | 7:       | 9             | -13.1                               | 210 | ₩ <sub>7-</sub> 01 ×                                                        |

<sup>a</sup> Abbreviations used in the table: AIBN, azobisisobutyronitrile; DBNO, di-tert-butyl nitroxide; DMSO, dimethyl sulfoxide; DPPH, diphenylpicrylhydrazyl; TCNE; tetracyanoethylene. <sup>b</sup> Cyclohexane 40 v%, tetramethylsilane 30 v%, dichloromethane-d<sub>2</sub> 15 v%, and methylcyclohexane-d<sub>14</sub>, 15 v%. <sup>c</sup> Calculated from the rates at 1 and 2000 atm.  $^d$  At 500 atm, calculated from pressure and viscosity effects on  $k_c/k_d$ .  $^{\circ}$  Calculated from the rates at 1 and 1000 or 1350 atm. 'Rate constants up to 6.2 kbars are given in  $AIChE J_J$ , 16, 766 (1970).  $^9$  Calculated from the rates at 1 and 500 atm. 'Estimated from the figure. 'The reaction goes through anchimerically assisted and unassisted processes. The estimated activation volumes (cm³/mol) for each process

follow with assisted, then unassisted value given: MeO, -7.3, -13.5; Me, -6.8, -13.4; H, -6.5, -13.2. I From the sum of anchimerically assisted and unassisted reaction rates. \*\* Not a pure Menshutkin reaction.  $^{158}$ <sup>7</sup> The reaction does not proceed at lower pressures. <sup>77</sup> Estimated by present authors. <sup>77</sup> Pressure effect on the dissociation of EtOK is taken into account in the calculation. Ocurected for pH changes under pressure.  $^p$  First order in H<sup>+, q</sup> Second order in H<sup>+, r</sup>  $\Delta V^* > 0$  above 0.5 kbar.  $^s \Delta V$  values in cm³/mol throughout.  $^t$  Dimethylacetamide 60 v%, tetramethylsilane 20 v%, and acetone-d<sub>6</sub>, 20 v%. decade most chemists active in the field had become used to bars and kbars; since virtually all data reviewed here were published in those units, we continue to use them here. The conversion is trivial: 1 kbar = 0.1 GPa (gigapascal).

### II. Activation Volumes of Organic Reactions

#### A. The Data in Tabular Form

Comments on the information in Table II are in the following sections on the more important and interesting cases; some individual entries are skipped in the narrative if the mechanism is unknown, or if the information is of a routine nature.

## **B.** Racemization and Related Reactions (Entries 1 - 13)

Brower<sup>63</sup> has found that the racemization of tert-butylsulfonium cation has a positive activation volume of 6.4 cm<sup>3</sup>/mol, consistent with dissociation into and recombination of tert-butyl cation and the sulfide. Sulfoxides appear to racemize by simple inversion, with zero volume requirements. The exception is a benzyl sulfoxide; dissociation (homolysis) is indicated in that instance, though it seems likely that the high temperature (hence expanded solvent) contributes to the large value of  $\Delta V_0^{\pm}$ . Somewhat surprisingly, the allylic sulfoxide is almost indifferent to pressure; this was attributed to a concerted [2,3] sigmatropic shift, but with a transition state looser than is common in such reactions.

The biphenyl racemizations reported by Plieninger<sup>64</sup> are apparently subject to incredible accelerations by pressure; the volume decrease is virtually that of the entire molecule. Such a decrease is conceivable if the reaction involves ionization of the acid (in toluene, at 90 °C) as a necessary first step. On the other hand, that seems hardly likely since a solvated carboxylate group is surely not smaller than carboxyl. Close, known analogs of these reactions reviewed elsewhere<sup>1</sup> are known to be virtually pressure independent, and it seems desirable that these studies be repeated and the results confirmed.

The data obtained by Lüdemann<sup>65</sup> are a consequence of the advances in technology mentioned above. The rotation of the C-N bond in dimethylacetamide must surely involve loss of the resonance-induced dipole, and the pressure inhibition is reasonable on that basis (see eq 13). The inversion of cyclohexane involves no such change of dipole, and the activation volume is close to zero.

## C. Homolysis and Related Reactions (Entries 14-56)

A great deal has been learned about homolytic bond scission under pressure in the past decade or so, principally through the work of Neuman. As he has pointed out in many papers and in his review, 12 the products through which we become aware that bond scission has occurred arise through several competing and successive steps, which may be symbolized as in eq 14. This scheme brought order to what is otherwise a bewildering variety

$$A \longrightarrow B \xrightarrow{k_1} (\dot{A}, \dot{B}) \xrightarrow{k_d} \dot{A} + \dot{B} \longrightarrow \text{escape products (14)}$$

$$\downarrow k_c \longrightarrow \text{cage products}$$

of activation volumes in free radical decomposition reactions. The following assumptions are made: (a) that the transition state in the bond fission process is early, at least so far as the geometry of the breaking bond is concerned, and hence that the activation volume is small (of the order of 4-5 cm<sup>3</sup>/mol); (b) that the activation volume for diffusion is relatively large (of the order of 10 cm<sup>3</sup>/mol); (c) that diffusion from the cage is irreversible; (d) that the first step may have a polar component, i.e., that the approach to the transition state may be characterized by a change in dipole moment; (e) that in molecules capable of two or more bond scissions, the resulting fragmentation may or may not occur concertedly, and that if it does,  $\Delta V^{\ddagger}$  will be less positive than if it does not. The concerted reaction is assumed to be irreversible. These generalizations work out in the following ways.

When tert-butyl phenylperacetate and perbenzoate are compared, the large difference in  $\Delta V^{\ddagger}$  (about 1 cm<sup>3</sup>/mol for the former and 10 for the latter) is thought to be due to concerted two-bond scission in the peracetate, and stepwise reaction in the perbenzoate:66

PhCH<sub>2</sub>CO<sub>3</sub>-
$$t$$
-Bu  $\rightarrow$  PhĊH<sub>2</sub> + CO<sub>2</sub> +  $t$ -BuO·  
PhCO<sub>3</sub>- $t$ -Bu  $\rightarrow$  PhCO<sub>2</sub>· +  $t$ -BuO·

Dipolar character of the first of these two transition states, Ph-CH<sub>2</sub>+ $\delta_{-}$ -CO<sub>2</sub>- - -O<sup>- $\delta_{-}$ </sup>t-Bu, is partly responsible for the very small value; thus, in reaction 15  $\Delta V^{\pm}$  is found to be  $\pm 4$  cm<sup>3</sup>/

$$S$$
  $CO_3$ - $t$ -Bu  $S$   $+ CO_2 + t$ -BuO· (15)

mol.<sup>69</sup> Similar values obtain in the case of azo compounds, and Neuman was able to correlate his rate studies with product distributions; thus, the formation of products arising from substrate and radical scavengers generally has a  $\Delta V^{\ddagger}$  value of about  $\pm$  10 cm<sup>3</sup>/mol or more, whereas cage products have  $\Delta V^{\pm}$  values of about +5 cm<sup>3</sup>/mol. The decomposition of N-(1-cyanocyclohexyl)pentamethyleneketenimine has an activation volume of

$$S \longrightarrow C \longrightarrow N \longrightarrow S$$

5 cm<sup>3</sup>/mol in chlorobenzene and gives rearrangement products only; in cumene, escape products become important and  $\Delta V^{\pm}$ = +13 cm<sup>3</sup>/mol.<sup>73</sup> Among cyclic azo compounds, the six- and seven-membered rings open concertedly with  $\Delta V^{\pm} = 5.5$ cm<sup>3</sup>/mol; the eight-membered analog opens stepwise, as suggested by the appearance of relatively large amounts of trans hydrocarbon product, and  $\Delta V^{\ddagger}$  is now  $+7 \text{ cm}^3/\text{mol.}^{77}$  It is obvious in any case that with the complex scheme operating in these reactions, both rates and product distributions under pressure provide valuable information, but this cannot be reproduced here in all detail for all cases, and the interested reader must be referred to Neuman's review12 and other publications.66-78

The decomposition of  $\alpha, \alpha'$ -azobisisobutyronitrile under pressure has been discussed in similar terms by Ogo. 79 The rather large value of  $\Delta V^{\pm}$  in cyclohexane was ascribed to the unusually large value of the same parameter for viscous flow in that solvent; evidently a relatively large cavity must be created in this medium to permit diffusion.

The xanthate elimination studied by Eyring<sup>80</sup> has an activation volume of +12.3 cm<sup>3</sup>/mol, a value consistent with much bond breaking in the transition state as might be expected from such a fragmentation:

The very large pressure-induced acceleration of the aromatization of hexamethyl(Dewar benzene)<sup>81</sup> is at present a major mystery. The volume decrease (-35 cm<sup>3</sup>/mol) is well over one-third of the volume of the aromatic nucleus; clearly no mere rearrangement could produce this. It is conceivable that the transition state has dipolar character, but it is certainly not ex-

pected. Repetition of the measurement and other mechanistic studies are in order. The dioxetane decomposition of tetramethyldioxetane was studied by Kelm, 82 with measurements based on the chemiluminescence of that reaction. It proved difficult to extract  $\Delta V^{\mp}$  from the data, and the result of about  $\pm$  10 cm³/mol could not be interpreted with certainty in terms of the hotly debated question concerning the stepwise or concerted nature of the reaction (the authors favored the concerted mechanism); thus, this case illustrates the experience so often gained with other techniques that no approach is fully reliable if analogs with known mechanism are unavailable.

The decomposition of ethylcyclobutane<sup>83</sup> at 410 °C at nitrogen pressures to 2 kbars is one of the few carried out in the gas phase. There are no stereochemical features in the molecule that hint at the mechanism; the result chiefly confirms that the absolute values of activation volumes tend to be larger at higher temperatures.

# D. Bond Forming Reactions and Cycloadditions of Neutral Species (Entries 57–156)

One-bond-formation processes not involving ions are relatively rare, at least in tables of pressure effects, but what little there is proves interesting. The simple combination of radicals has been studied in the termination step of polymerizations, and it was reported—and now confirmed by  $Ogo^{89}$ —that  $\Delta V^{\ddagger}$  is quite large and positive.1 To account for this result, at first seemingly so surprising, it was noted that this step is almost certainly diffusion controlled, and that the diffusion steps through the increasingly viscous medium must surely be pressure inhibited. An example is now known in which two radicals, created together in a cage, combine; the  $\Delta V^{\ddagger}$  for this process is -4.2cm³/mol.<sup>70</sup> This is of the right order of magnitude; however, it should be remembered that for a process such as this, in which the activation barrier must be small or even zero, the transition state theory may not be valid (since there is then no equilibrium between initial and transition states, a condition essential in the derivation of eq 4). That is not to say, of course, that there is no pressure effect, only that the transition state formalism may not be suitable to represent the results.

The propagation step in several free-radical polymerization reactions has an activation volume averaging around -22 cm<sup>3</sup>/mol. This rather large contraction is likely the result of the large volume requirement of the  $\pi$  bond; the presence of a double bond is known to necessitate a large correction in parachor calculations.<sup>1</sup>

Cycloadditions under pressure have become a fruitful area of research, largely as a result of work by Eckert and his coworkers. Walling had previously claimed that  $\Delta V^{\ddagger}$  was too small in comparison to  $\Delta V$  for a concerted nature of the Diels–Alder reaction and that singlet diradicals must be involved; however, Eckert  $^{91,92}$  showed that  $\Delta V^{\ddagger}/\Delta V$  was far in excess of 0.5 in

several cases examined with great care, and hence that the reaction must be concerted. Certain caveats are possible, of course. Thus, a two-step reaction with the second step rate controlling would also produce this result; however, this assumption would be at variance with the clean stereochemistry of the reaction. Intermediate diradicals would not be expected to return to the initial state molecules in the same configuration if a rapid preequilibrium occurred.

Several results stand out when the list of Diels-Alder reactions is scanned. One of these is that there are at best only small solvent effects such as would be expected if these reactions were two-step sequences with a zwitterionic intermediate; this is an important consideration because an ionic contribution would obviously also be able to account for large negative activation volumes. In one instance, the cycloaddition of maleic anhydride to 1-methoxy-1,3-butadiene, a somewhat larger solvent dependence can be discerned; in this case a contribution from charge transfer between the two partners, so different in electron wealth, may have contributed.

A second observation of great interest is that  $\Delta V^{\mp}/\Delta V$  in several cases exceeds unity. Eckert<sup>92</sup> has attributed this to secondary orbital interactions, a feature which provides an attractive force between atoms in the transition state which must recede at least to van der Waals distances again in the product. In support of this notion, he points out that this remarkable  $\Delta V^{\mp}/\Delta V$  ratio is common in those cases in which such interactions are geometrically possible, but they are not observed with such dienophiles as acetylenedicarboxylates (see eq 16).

$$(16)$$

A third feature is concerned with the remarkable contrast between volume and energy descriptions of the Diels-Alder reactions. According to the volume criterion, one should have to describe this reaction as having a very late transition state: the nuclei are already at or very near their final positions. On the other hand, the Diels-Alder reaction is considered by physical organic chemists as a textbook case of an early transition state; this is deduced from the facts that activation energies are very small and that the reactions are highly exothermic. Actually these descriptions are not really at variance; the volume is a criterion for the nuclear positions, and the energy is principally a measure of the electronic progress of the reaction. One may picture the Diels-Alder reaction as one in which it is necessary for the nuclei to approach their final places closely before the electrons will flow to theirs. In this connection it should perhaps be pointed out that the  $\Delta V^{\ddagger}/\Delta V > 1$  criterion does not *prove* the operation of secondary orbital interactions; it is conceivable that the electrons will simply not flow unless the atoms to be bound have first bounced to within single bond length of their partners to be.

One important piece in this puzzle is still missing: there is as yet no example of a retro Diels-Alder reaction in which secondary orbital interactions force endo stereochemistry. In such a reaction the activation volume should be negative. This would be a remarkable result: a reaction in which two bonds are breaking, and with yet an initial volume decrease. Such an ob-

servation would provide important support because the very large, negative activation volumes in the forward direction are notoriously difficult to measure precisely.

The [4 + 6] cycloaddition of tropone to cyclopentadiene is an instructive example in piezochemistry. 102 The reaction is a close analog of the Diels-Alder reaction in that it is symmetry allowed, though with exo stereochemistry. The activation volume is only -7.5 cm<sup>3</sup>/mol, and on that basis alone it would surely be deduced that the reaction proceeds in stepwise fashion; however, the equally small reaction volume (-4 cm3/mol) shows that the reaction is concerted. Measurements of the individual partial volumes of all three species participating in the reaction show that the reason for the unexpectedly small volume changes is the remarkably small volume of tropone, which can be attributed to its dipolar nature.

Very different behavior is indicated by the high-pressure results for the [2 + 2] cycloadditions. Here again,  $\Delta V^{\pm}$  is very large and negative, but now for a different reason. The reaction occurs in two steps, via a zwitterionic intermediate as is indicated by lack of stereospecificity, solvent effects, and trapping experiments. 105 Electrostriction thus is responsible for the small volume. This explains the solvent sensitivity of  $\Delta V^{\ddagger}$  (as well as a large, negative  $\Delta V^{\ddagger}$  for the reverse reaction listed in section

As yet there have been no reports of pressure effects in allowed, antarafacial [2+2] cycloadditions, in stepwise [2+2]cycloadditions proceeding via diradicals (the competition of one such reaction with a Diels-Alder reaction under pressure has been described; see section III).

The very substantial pressure-induced rate increases in all manner of cycloadditions have attracted the attention of synthetic chemists as well. There are instances in which the avoidance of high temperature was achieved, 106 others in which pyrone 107 and even benzene 108 become involved in Diels-Alder reactions, and one 109 in which a pressure-stabilized intermediate (a styrene-TCNE adduct) is obtainable in such high concentrations at 8 kbars that it is directly observable. Dipolar [2 + 3] cycloadditions can also be carried out at high pressure with great advantage in yield; sometimes changes from 0 to 100% are effected! Examples include diazomethane 110 and nitronic esters.111

## E. Solvolysis (Entries 157-435)

The large number of available data makes it somewhat difficult to organize them in a satisfactory way. The activation volumes are subject to relatively small structural effects (including leaving group effects) superimposed on sometimes much larger solvent effects. The temperature also causes fluctuations, and since there are, of course, variations in precision and accuracy, the impression one gets from a first inspection does not inspire much confidence. Our organizing principle has been as much as possible to group together those data which allow a single question to be considered, even though in several instances this leads to the same reaction being entered in several places.

Perhaps the largest single effect is the solvent composition when one of the components is water. At first glance, there seems to be a bewildering series of variations in the  $\Delta V^{\mp}$  of solvolysis of benzyl chloride in aqueous solvents. Closer inspection, however, uncovers several interesting features. First of all, there is in most instances a maximum in the value of  $(-\Delta V^{\dagger})$ . This maximum is in most cases close to pure water, and the approach to the maximum from the pure water end of the solvent spectrum is very steep; thus, at 50 °C in pure water,  $\Delta V^{\ddagger}$  is about ~10 cm<sup>3</sup>/mol, but with 5 mol % t-BuOH present,

 $\Delta V^{\ddagger}$  is already -25 cm<sup>3</sup>/mol. Similar though less drastic effects occur with other organic cosolvents, at other temperatures, and with other substances. The variations on the organic side of the maximum are much smaller; thus, with dioxane, water content variation from 10 to 36 mol % has no discernible effect at all. Partial molal volume measurements have shown that a major part of these variations is due to the initial states; i.e., to the substrates. 112 These data therefore reveal more about the solvent mixtures than about solvolysis or its pressure dependence. As is well known now, water is a highly structured solvent; the introduction of small amounts of solvent often brings about drastic alterations in this structure, and large effects on the partial volume of the solute are the result. The solvent effect on  $\overline{V}$  of the transition state alone in the aqueous medium resembles that of inorganic salts. 112

This information led Whalley to consider the difference in activation energy for solvolysis at constant pressure and at constant volume: 128 he concludes that the variations so often seen in aqueous mixtures as a function of composition are much smaller if the constant-volume parameter is used. Along the same lines, if the cosolvent considered is glycerol, which has thermal expansivity nearly independent of added water, the extremum behavior virtually disappears. 129 Whatever use can be made of these arguments, one conclusion is clear; if one is going to study structural effects, water or highly aqueous solvents should not be used.

There are several sets of data which show that  $\Delta V^{\ddagger}$  is also temperature dependent. In most instances,  $\Delta V^{\pm}$  becomes more negative in solvolysis at higher temperatures, which is not surprising since both the density and the dielectric constant decrease as the temperature is raised. The temperature coefficient of  $\Delta V^{\ddagger}$  of benzyl chloride hydrolysis in pure water is surprisingly large near 0 °C; perhaps this is related to the abnormal behavior of the coefficient of thermal expansion in that range. The two sets of data for isopropyl bromide in water have contradicting trends, and one of these must be wrong. In any event, these variations further diminish the value of structural comparisons that one might otherwise have been able to make.

The first set of data in this group that seems to have true structural information is that gathered by Sera et al. 130 at 25 °C in acetone containing only 11.5 wt % water; it concerns the hydrolysis of cumyl chlorides. The data correlate crudely with  $\sigma^+$ ; the slowest of these chlorides seem to solvolyze with the most negative activation volumes. This is what would be expected if the Hammond postulate were applied to the series; unfortunately there appears to be no independent evidence that

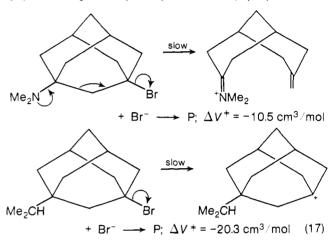
One of the reasonable suppositions one can make about  $\Delta V^{\pm}$ for solvolysis is that it should be sensitive to steric factors; thus, if approach to the ionic sites is hindered, solvation might suffer interference and  $\Delta V^{\pm}$  would be less negative.

Inspection of the available data does not support this line of reasoning; the solvolysis in aqueous alcohol (20 vol % water) of benzyl chlorides does not show pressure effects that can be said to fluctuate abnormally because of o-methyl, isopropyl, or even tert-butyl substitution. 131 The formolysis and methanolysis of secondary tosylates under pressure are at best barely affected by even the most extreme alkyl crowding. 132 In cyclohexyl derivatives,  $\Delta V^{\pm}$  is if anything slightly more negative if the leaving group has to depart in the axial direction, nor are any effects visible in the solvolyes of 2-adamantyl or endo-2-norbornyl tosylates. 133 How does one explain it?

We should probably not consider the alkyl groups as hindering solvating molecules any more than we view the first solvent shell as hindering the second. The alkyl groups simply become part of the solvent shell, which because of its low dielectric constant furthermore efficiently transmits the electric field to be felt by solvent molecules outside. We should perhaps be reminded that  $\Delta V_{\rm e}$  is very large in nonpolar media.

The lack of sensitivity of  $\Delta V^{\dagger}$  to steric influences is actually a fortunate circumstance, because it allows us to use the activation volume as a criterion to judge the likelihood of participation; it is well known that steric hindrance to ionization is often brought up as an alternative to participation to explain rate ratios and stereochemical discrepancies between epimers. Following our initial demonstration of the effect of charge delocalization on  $\Delta V^{\mp}$ , several additional instances have come to light. Sera's study of phenyl participation is an impressive case in point. 134 He was able to measure  $\Delta V^{\ddagger}$  in formolysis of a number of para-substituted phenylethyl tosylates and, on the basis of deviations from the Hammett plot, calculate  $\Delta V^{\dagger}$  for both the solvent- and phenyl-assisted rates. The data show that  $\Delta V^{\pm}_{obsd}$ decreases from -7 to -13 cm<sup>3</sup>/mol as the electron-donating methoxy substituent is changed to nitro; careful data dissection furthermore shows that, even with methoxy, a very minor unassisted pathway with a  $\Delta V^{\pm}$  of -13 cm<sup>3</sup>/mol is contributing. Since the reality of phenyl participation is now conceded by all, this demonstration thus provides a powerful shot in the arm for the original claim that pressure effects could provide such a criterion.

Possibly an even more dramatic case had been recorded earlier with a para oxide substituent; in that case participation leads not to ionization but to electron transfer through the ring to the carbonium ion site, and  $\Delta V^{\ddagger}$  is reduced from -20 to -1 cm³/mol! Even a much more distant phenyl ring can be effective under such circumstances: 4-p-oxidophenylbutyl tosylate produces tosylate ion with  $\Delta V^{\ddagger}=-5.4$  cm³/mol.  $^{135}$ 


Less success has been achieved so far in discerning from the activation volume to what degree the solvent is active as a nucleophile, or displacing agent, apart from its solvating role. Especially with unstabilized and/or unhindered cations it might be supposed that the solvent would engage in bonding to the cationic site, and that this should lead to contraction relative to cases in which such bonding is either geometrically impossible or energetically not necessary.

The evidence is somewhat conflicting. There is virtually no difference in  $\Delta V^{\ddagger}$  of the methanolyses of ethyl chloride and tert-butyl chloride. Sera reports  $^{139}$  that methyl and isopropyl tosylates have increasingly negative activation volumes as the solvent is varied to a more nucleophilic one (formic acid to aqueous acetone to methanol), but 1- and 2-adamantyl tosylate, in which such bonding is geometrically not possible, also show this behavior. Additional information is needed here.

High-pressure measurements have provided a satisfying answer to the problem of how to distinguish concerted ionogenic fragmentation from stepwise analogs.  $^{140}$  This is not to say that there is no alternative answer to the question: thus, Grob had noted  $^{141}$  that rate accelerations up to 5  $\times$  10 $^4$  occurred in the fragmentations of many  $\gamma$ -haloamines compared to the carbon homomorphs, where inductive retardation should have been expected if the mechanism in the former had been analogous to that of the latter:

On the other hand, the haloamines produce fragmentation products even when the inductive effect outweighs the driving force of concerted reaction, and hence there is no way to tell where the limit lies.

The high-pressure criterion is simple: in a concerted fragmentation one may expect that the effect of the extra breaking bond will reduce the pressure acceleration. In the event, in view of the enormous spread in rates, it was necessary to resort to differences in leaving group and temperature; however, comparisons with known compounds allowed small corrections for these changes to be applied. Table II only shows the observed  $\Delta V^{\ddagger}$  values; for the calculated ones corrected to a common temperature and leaving group, one should consult the original papers. A single example may suffice here (eq. 17). The entire



group of data in that paper may be summarized by  $\Delta V_{\rm c}^{\pm} = -21.5 \pm 1.8 \, {\rm cm^3/mol}$ ;  $\Delta V_{\rm N}^{\pm} = -13.3 \pm 2.0 \, {\rm cm^3/mol}$ . There is one amine which falls outside that limit; for

NMe 
$$\Delta V^{\dagger} = -23.8 \text{ cm}^3/\text{mol}$$

This amine also happens to be the slowest, slower by a factor of 8 than the carbon homomorph. Clearly, the inductive effect operates to its full extent here, there is no concertedness, and the reaction proceeds stepwise to the fragmentation products.

Solvolysis and the pressure effect on it have been used to advantage by Colter <sup>142</sup> to demonstrate charge-transfer catalysis. The transition state of acetolysis of 9-(2,4,7-trinitrofluorenyl) tosylate is reduced by about 5.5 cm³/mol in size if 9-methylanthracene is present; this figure is in good agreement with equilibrium data for charge-transfer complexation. It is considered to be a 10-cm³ volume decrease, tempered by a 5-mL increase due to delocalization.

The linkage isomerization in benzhydryl isothiocyanate and its competition with solvolysis give important information about charge separation. 143 The former reaction surely occurs within the tight-ion-pair stage, and the latter within the loose stage. The difference is 4 cm³/mol. We may compare this value with equilibrium data obtained in ion-pair studies in nonpolar solvents (see section V).

The decomposition of *tert*-butyldimethylsulfonium salts<sup>144</sup> stands in interesting contrast to the other solvolysis data in that the charges are already there, and delocalization in the transition state will if anything reduce electrostriction. The activation volume is large and positive.

This series of data ends with information on the hydrolysis of acyl chlorides, in which the rate-controlling step combines the features of ionization and conversion of a carbonyl carbon into a tetrahedral atom (eq 18). The large contraction that occurs may

$$R \longrightarrow R \longrightarrow C \longrightarrow CI$$

$$CI \longrightarrow R \longrightarrow C \longrightarrow CI$$

$$H \longrightarrow C$$

be explained in that way. The data parallel those of solvolysis of simple halides in that  $\Delta V^{\mp}$  is again strongly dependent on the composition of the aqueous solvent: it varies from -30 cm<sup>3</sup>/mol in THF containing little water to about - 10 in pure water. With MeSO<sub>2</sub>CI, virtually no differences are observed between H<sub>2</sub>O and D<sub>2</sub>O; this is an example of the fact that transition states as well as normal molecules only rarely have measurably different steric requirements upon isotopic substitution.

Mention should be made here of several qualitative results obtained by Okamoto. 148 He finds that the application of 5 kbars on the solvolysis reaction has quite drastic effects on the product

ratio, the substitution product being favored over the olefin, as might be expected. The same result obtains if base is present: under those conditions the unrearranged alkoxy compound is also formed, but in decreasing yield as the pressure is raised, in agreement with expectation since S<sub>N</sub>1 solvolysis invariably has a more negative activation volume than ionic S<sub>N</sub>2 substitution (cf. also the following section).

## F. Bimolecular Nucleophilic Substitutions (Entries 436-535)

The Menshutkin reaction has continued its role in the limelight of piezo chemistry. This is for obvious reasons; because of the combination of displacement and ionization features, it is subject to large pressure effects, and in spite of its ionic nature, it can be carried out in even highly nonpolar solvents; it obeys clean second-order kinetics and is believed to have simple least motion characteristics with an early transition state.

The data pertaining to the influence of solvent are unfortunately for the most part not usable, since they were "corrected" for compressibility; in most of these cases the magnitude of the alterations are of the order of 10% or so. This introduces a systematic error which may in some cases overshadow the solvent effects. Nevertheless, it is clear that there are real solvent effects, and that they are roughly predictable on Drude-Nernst grounds:  $-\Delta V^{\ddagger}$  is largest in hexane, and smallest in methanol, nitrobenzene, and so on. The pressure accelerations increase with increasing temperature, and vary in capricious ways with composition in mixed solvents.

The Menshutkin reaction and its sensitivity to pressure have provided the means for experimental support of the Hammond postulate, a principle often used by kineticists to rationalize comparative rate data. The principle as used by most chemists states that when two reactions of the same sort differ significantly in exothermicity, the one liberating the most energy will have the earlier transition state. It is often used in conjunction with the principle of Polanyi according to which that reaction will also be faster (have a lower barrier). 159

When we compare the reactions of 2,6-dialkylpyridines with alkyl iodides, 157 we find that the rates are greatly depressed by increases in size and branching of either alkyl group. This then should mean that increases in hindrance are raising the barrier and shifting it in the direction of product. Gonikberg<sup>1</sup> has explained the increasingly negative  $\Delta V^{\ddagger}$  values in terms of overlapping, or interpenetrating groups; however, relatively facile bond bending and hard-sphere characteristics are now such a

well-established part of the scene that this explanation does not satisfy, and the Hammond postulate provides a much better rationale. 160 It has been found that neither the pyridines nor the pyridinium salts have large volume abnormalities; when the  $\Delta V^{\dagger}$ values for these reactions are compared with  $\Delta V$ , one observes that the ratio  $\Delta V^{\ddagger}/\Delta V$  steadily increases as the hindrance is raised. Thus, we regard the special pressure acceleration of highly hindered Menshutkin reactions as simply a manifestation of the Hammond postulate.

Several additional comments are of interest here. For one, this explanation has received further support in that if methyl chloride is used, one observes 161 a measurable increase in the chlorine 35/37 isotope effect between pyridine and 2,6-lutidine; for another, an independent estimate by Kondo 155 has led to a value of 20-40% charge development in the benzylation of pyridine, in rough agreement with our estimate for the methylation. These estimates explain why the activation volume of the Menshutkin reaction is so much more sensitive to steric hindrance than that of the superficially similar solvolysis reaction; the latter has a very late transition state, and the application of pressure cannot make it much later. Finally, it is perhaps worthwhile to emphasize just how great the effect is; for instance, 2,6-di-tert-butylpyridine is ordinarily not methylated at all, but even at 5 kbars the reaction is rapid. 162

The other data are all for ionic displacement reactions. Previously known listings generally reported  $\Delta V^{\ddagger}$  for such reactions in the range of 0 to -10 cm<sup>3</sup>/mol, and hence there are few surprises here. One item of interest is the large value of -24 cm3/mol when lithium chloride is used in acetone. This is due to the fact that the ion pairs or clusters must first dissociate (see Appendix); it warns us that uncritical conclusions from S<sub>N</sub>2 reactions of this sort are fraught with danger. Another point of interest is Ewald's 125 conclusion that displacements leading to cyclic products have less negative activation volumes than open-chain analogs.

#### G. Carbanion Reactions (Entries 536-616)

A conceptually simple reaction is rate-controlling proton transfer, and this is essentially the mechanism in the basepromoted isomerizations of several substituted cyclohexenes studied by Steinberg. 169 A priori, one expects that  $\Delta V^{\pm}$  will be negative since this is essentially an S<sub>N</sub>2 reaction at hydrogen; however, the value might be less negative than usual since the incipient product is a charge-delocalized allylic anion. The surprising result is that  $\Delta V^{\mp}$  is about -20 cm<sup>3</sup>/mol in most instances. It is known that anions are not very well solvated in dimethyl sulfoxide ("naked anions"). These large pressure induced accelerations may be due to that, and to the dissociation of t-BuOK under pressure; at present we will have to wait for further results in that medium.

Hamann and Linton<sup>170</sup> have found that different mechanisms apply to the base-catalyzed D-exchanges of formate and acetate ions. Formate ion exchanges with first-order kinetics and an activation volume of -2 cm3/mol, via a transition state best pictured as

whereas the acetate, with second-order kinetics and an activation volume of -10 cm<sup>3</sup>/mol, has at least a substantial pathway via the carbanion

444

Jost<sup>171</sup> has examined the kinetics of proton exchange in very fast processes by means of T-jumps. His *p*-nitrophenol analog has a very large positive activation volume for proton donation to hydroxide, fully in accord with the highly delocalized nature of the incipient anion.

The proton transfers examined by Caldin<sup>172</sup> are of interest especially in that extremely large  $k_{\rm H}/k_{\rm D}$  ratios (up to 50) strongly suggest that tunnelling characterizes the process. The indifference of  $\Delta V^{\pm}$  to solvent effects contrasts with quite a bit of variation of  $\Delta V$ , and Caldin has argued that this is consistent with his mechanism; however, the activation volumes for the reverse reactions are sensitive to pressure, yet tunnelling must characterize them too if microscopic reversibility holds.

In base-catalyzed eliminations Brower<sup>166</sup> has found an answer for a long-standing puzzle: how to assign the so-called E2 and E1cB mechanisms (concerted reaction and carbanion intermediacy):

He reasoned that E2 reactions should have negative activation volumes because of their resemblance to displacements, and that E1cB reactions should have positive  $\Delta V^{\mp}$  values because there should be essentially no volume change in the proton-transfer preequilibrium step, and a volume increase in the C–X bond cleavage. His study of several textbook examples bears him out. Again, we should be mindful of the ever present complication of ion pairing in these organic media; a large change in  $\Delta V^{\mp}$  resulted in one instance from the addition of a crown ether.

A perplexing case is that of the base-promoted diacetone alcohol decomposition. There is no doubt in this case about the fact that proton removal is extremely fast and that the reaction is E1cB. Brower does indeed find  $\Delta \, V^{\pm}$  to be +6 cm³/mol; however, Morlyoshi¹¹³ finds an activation volume varying from -9 to +8 cm³/mol, depending on temperature and solvent composition, with lower temperatures and the more aqueous alcohols favoring the negative end of the spectrum. Further data would be welcome here.

The fragmentations of  $\beta$ -bromoangelate  $^{174}$  ion and of chloroacetylhydrazide  $^{175}$  provide us with as convincing a pair of examples of the power of high-pressure kinetics as can be imagined. In the former case, concerted bond cleavages can be assumed since the activation volume is roughly double that normally observed in simple decarboxylation;  $^1$  in the latter case  $\Delta V^{\pm} = -5 \text{ cm}^3/\text{mol}$ , which was a divergence from the expected value so great that the ''known'' mechanism could be scrapped on that basis alone. Reinvestigation revealed that the slow step—following ionization of the  $\alpha$ -NH group—is internal displacement, and the final products are preceded by a long series of intermediates. Regarding the difference in  $\Delta V^{\pm}$  for the base-catalyzed condensations of n- and isobutyraldehyde, this has been attributed to prior hydration of the carbonyl function in the case of the latter.  $^{176}$ 

The Meerwein–Ponndorf type reduction of diisobutyl ketone with *n*-butoxide is second order in both base and substrate. <sup>178</sup> With that many species congregating in the transition state, the negative activation volume is reasonable, though its magnitude could certainly not have been predicted with confidence.

The activation volume of the hydrolysis of esters via base catalysis is consistent with the formation of a tetrahedral intermediate, which then partitions into acid and ester. The bond formation is responsible for the negative value. A much more negative value obtains in the addition of thiophenoxide to mesityl oxide; this is in accord with the less extensive electrostriction by the more delocalized thiophenoxide ion. The activation volumes observed by Tiltscher 182 for the cesium phenoxide catalyzed additions are such that no bond formation alone can account for them, and ion pair separation is part of the activation process.

The base-promoted hydrolysis of chloroallenes has a positive, but small activation volume. Since this is a clear-cut case of a carbene reaction, and since the volumes of the transition states of formation of the carbene are virtually the same whether one begins with the chloroallene or the isomeric acetylene, the authors deduced that the carbene must initially be paired with the leaving anion (eq 20). <sup>183</sup> During the reaction the chloroacetylene

rearranges to a small extent to the allene, and this isomerization was shown to be base promoted (hence via the anion), and to take place via internal return. Further support for these conclusions must await stereochemical proof.<sup>184</sup>

#### H. Acid-Catalyzed Reactions (Entries 617–756)

It seems a bit surprising that the acid-catalyzed dehydration leading to  $\alpha,\beta$ -unsaturated carbonyl compounds is accelerated by pressure, since the main process is the splitting into two molecules. It must be assumed that in the transition state the base removing the proton is quite tightly bound and the leaving water molecule not yet very loose.

In any case, the reverse reaction (the hydration of the olefin) is also accelerated, and the difference between the two  $\Delta\,V^{\ddagger}$  values is indeed consistent with the bond cleavage (-5.8 - (-19.8) = +14 cm³/mol). The activation volumes for addition of methanol or ammonia to a double bond are comparable to that for hydration.

The opening of small cyclic ethers can be seen in light of Whalley's criterion, 6 negative activation volumes denoting an A2 mechanism, and positive values an A1 path and free carbonium ion. In every instance reported in Table III,  $\Delta \textit{V}^{\mp}$  is negative

The acetal formation reactions reported by Imoto <sup>192</sup> are surely acid catalyzed, and hence autoionization should be part of the activation process. Since  $\Delta V_{\rm l}$  is quite large and negative in such media (<-20 cm³/mol), the observed negative values seem quite small. The reverse reactions (some of which are shown further below) have in any case been identified as A1 reactions traversing an alkoxy-stabilized carbonium ion; the main transition state is probably close to

An interesting example of the use of  $\Delta V^{\ddagger}$  as a criterion in A1–A2 reactions is the hydrolysis of benzoic acid anhydrides. Koskikallio<sup>193</sup> has found a very sharp change of sign from plus to minus as a function of solvent composition in aqueous dioxane. If little water is present, the mechanism is A1 ( $\Delta V^{\ddagger}=+$ ), and in more aqueous solutions this changes to A2 ( $\Delta V^{\ddagger}=-$ ). This conclusion is supported by that of a substituent effect: p-methoxy leads to A1 over the entire range of solvents, and p-nitro to A2 in all solutions save those containing virtually no water at all! In some instances in which the A1 mechanism is slighly favored, modest pressure may conceivably suffice to bring about a change, leading to minima in the In k vs. p curves. When no acid is present, the autoionization again becomes part of the activation process, and much more negative  $\Delta V^{\ddagger}$  values result. The same thing is true of ethyl esters.

A change of sign occurs  $^{200}$  in  $\Delta V^{\ddagger}$  in the acid-catalyzed hydrolysis if iodide ion is present. Evidently this anion, rather than a water molecule, then serves to displace alcohol. The product is still ethanol, so that ethyl iodide is only an intermediate in the reaction.

The sucrose inversion is, of course, the classic example of an A1 hydrolysis.<sup>1</sup>

Osugi and co-workers<sup>201-205</sup> have made a thorough study of the acid-catalyzed benzidine rearrangement. They found that in most cases two pathways (I and II in Scheme I) contribute to

the reaction, and they were able to measure the pressure effects on both. It was found that  $\Delta \, V^{\pm}_{\rm I}$  is about  $-\,10~{\rm cm^3/mol}$ , and  $\Delta \, V^{\pm}_{\rm II}$  is much less negative. The results are consistent with considerable bond formation in advance of bond breaking in process I. The less negative value of  $\Delta \, V^{\pm}_{\rm II}$  is harder to understand in view

of the increased electrostriction that characterizes divalent ions. Simple bond cleavage of the monocation would account for  $\Delta \, V^{\pm}$  of the disproportionation. The mechanism of the oxidation to the azobenzene is not known, but the very large negative activation volume of  $-50~{\rm cm}^3/{\rm mol}$  will be difficult to explain without the creation of ionic charges in or prior to the transition state.

The pinacol rearrangement has been dissected in remarkable detail. It is known that the protonated diol eliminates water via both hydroxy- and phenyl-assisted paths; in the former case, the epoxide then formed may undergo C-O fission a second time to form the same ketone by phenyl participation. Moriyoshi and Tamura have measured the appropriate volume terms; 206 their results may be symbolized as shown in Scheme II. The values for process I seem reasonable, but it is not clear why transition states I and II should be similar in volume—the latter differing from the former by a bound water molecule. The volume changes in process III seem extremely large, and the authors conceded that large experimental errors may be responsible.

Fujii's results are reasonably explained in terms of the known formation of molecular chlorine in that reaction: a displacement of acetanilide from chlorine by chloride ion. The charge neutralization is responsible for the positive volume change.<sup>36</sup>

The self-catalysis in Hamann's esterification and hydrolysis should be seen as proceding via autoionization. <sup>198</sup> He noted that pivalic acid gives no abnormally large effect and warned that it is not wise to expect all sterically hindered reactions to show special pressure effects.

# 1. Miscellaneous Organic Reactions (Entries 757–765)

The very large acceleration in the isomerization of PhSnCH<sub>2</sub>CCH has been explained by Brower in terms of ion-pair formation, a sound suggestion since the reaction is known to be catalyzed by Lewis acids.<sup>207</sup>

Hamann<sup>167</sup> has studied the transition metal catalyzed displacements of some alkyl bromides. With silver ion,  $\Delta V^{\pm}$  becomes more negative than usual in S<sub>N</sub>2 reactions; silver ion assisted ionization is consistent with this.

$$R - X + Ag^+ \rightarrow R^{+\delta} - - X^{-\delta} - - Ag^+$$

### SCHEME II

With mercuric chloride, this effect is much smaller. It is known that mercury-halogen bonds are more covalent in nature, but perhaps the reason is not that simple; the mechanisms of these reactions have not been elucidated, and, in fact, the exact rate laws are not known.

The reopening of the enol ether–tetracyanoethylene adduct is of interest in that it is perhaps the only C–C bond cleavage known so far which is accelerated by pressure. <sup>208</sup> The activation volume, in fact, is similar to that in solvolysis, proving the fully zwitterionic nature of the cycloaddition and the reverse reaction. In this way it provides an interesting contrast with that of cyclopropanes to tetracyanoethylene: that reaction is retarded by pressure, and CIDNP is further testimony to the radical nature of that reaction. <sup>209</sup>

Mention should be made here of several qualitative observations that have synthetic value or potentially so. It was already noted that hindered Menshutkin reactions seem subject to special acceleration by pressure. Beside the examples noted above, Okamoto has reported the reactions of 2,6,N,N-tetramethylaniline<sup>211</sup> and 2,4,6-tri-*tert*-butyl-N-methylaniline<sup>212</sup> with simple alkyl iodides under pressure, as well as the reaction of trityl salts with pyridine.<sup>213</sup> Once again, one should not assume that all hindered reactions are going to be greatly accelerated by pressure; thus, Okamoto has also found that the solvolyses of neopentyl and 1-adamantylcarbinyl tosylates are virtually unaffected by pressure, with  $\Delta V^{\ddagger}$  close to zero in both cases!<sup>214</sup>

Several qualitative studies by Plieninger are also of interest; thus, he has reported high-pressure studies of the cycloaddition of carbon disulfide to norbornene<sup>215</sup> and a case of pressure-improved enantioselectivity in a chiral medium.<sup>216</sup> The dimerization of cyclooctatetraene under pressure has been described by Korte.<sup>217</sup>

#### III. Activation Volume Differences

#### A. The Data in Tabular Form (Table III)

It should be noted that  $\Delta\Delta V^{\pm}$  in all instances equals the difference in activation volume between the *n*th and 1st reactions given:

$$\Delta \Delta V^{\ddagger} = \Delta V^{\ddagger}_{a} - \Delta V^{\ddagger}_{1}$$

In many instances the two reactions have the initial states in common:  $\Delta\Delta V^{\ddagger}$  is then simply  $V^{\ddagger}{}_{n}-V^{\ddagger}{}_{1}.$  This is of course not so when a mixture of substrates is made to compete for the same reagent or intermediate. In a few entries, both types of data were produced in a single experiment.

## B. Competing Radical Reactions (Entries 1-24)

The inhibition of the formation of radical pairs by pressure is relatively small compared to their further separation, a fact already alluded to in the preceding section. This becomes especially clear when the effect of pressure on product distribution is studied: product formation within the cage is suppressed little compared to escape product yields. The difference in activation volume amounts to at least 10 cm<sup>3</sup>/mol in all known cases. It is interesting to see that this difference is apparently steeply solvent dependent: in five instances,  $\Delta\Delta V^{\dagger}$  equals 13 ± 1 cm3/mol in cumene, but much larger values obtain in other solvents. Diffusion is, of course, very dependent on the shapes of the molecules in the system; nearly spherical molecules have large activation volumes for self-diffusion, for example. A study of  $\Delta\Delta V^{\pm}$  for a single substrate in a series of solvents would be valuable to see if a correlation with shape can be found. Small differences are found if two cage reactions are compared; thus, pressure has much smaller effects on ratios of recombination and disproportionation.

Zhulin<sup>222</sup> has observed a systematic effect of pressure on the

competition of substituted toluenes for the *N*-bromosuccinimide derived radical. The linear variation with the  $\sigma$  constants of the substituents has a very high correlation constant; the Hammond postulate correctly predicts the direction of the effect. In many other instances of competition of aromatic substrates for radicals one can correctly guess which products will be favored under pressure by assuming it will be the most crowded or branched product.

### C. Competing Cycloadditions (Entries 25-39)

It was noted in section II that in many Diels-Alder reactions capable of secondary orbital interactions,  $|\Delta V^{\pm}|$  exceeds  $|\Delta V|$ , and hence that these interactions are supported by that observation. A caveat was also expressed: very large  $\Delta V^{\pm}$  values are notoriously difficult to measure precisely, and no case has yet been reported in which a retro-Diels-Alder reaction was accelerated by pressure. The data in Table III raise a further question. In those instances in which competing reactions take place, one presumably with, and the other without secondary orbital interactions, pressure should favor the former. Sera^225 has reported examples in which cyclopentadiene and acrylic acid derivatives give both exo- and endo-norbornenes, and in no case does  $\Delta\Delta V^{\pm}$  exceed 1 cm³/mol; furthermore, in two instances  $\Delta\Delta V^{\mp}$  has the wrong sign, with the exo product favored by pressure over the endo stereoisomer.

Stewart's data<sup>229</sup> provide an interesting piece of evidence for the concertedness of Diels–Alder reactions as compared to radical [2+2] cycloadditions; chloroprene dimerization provides both types of products, and the latter are suppressed in yield by the application of pressure. It should be pointed out in passing that the diradical intermediates can close to six-membered rings, and these compounds are therefore not necessarily Diels–Alder products; for the arguments which lead to the assignment of mechanism to the cyclohexenes, one should read Stewart's papers. The cycloaddition of tetrachlorobenzyne to norbornadiene is one in which the [2+2+2] reaction competes with a zwitterionic intermediate; electrostriction then provides an added incentive for the latter, and competition is about even.

# D. Miscellaneous Organic Reactions (Entries 40–59)

In a symmetrical pinacol, it has been found that pressure favors the migration of phenyl over that of o-anisyl. <sup>234</sup> This has been ascribed to the need for the migrating group to be desolvated.

In the ion-pair reaction (eq 21), a substantial amount of ra-

CI CI O Ph 
$$\rightarrow$$
 ester  $\rightarrow$  NO (21)

cemic ester is formed. The racemization occurs in the loose pair stage, and it depends clearly on the rotation of the cation, or its circumnavigation by the anion. Evidently these reactions, though dependent on diffusion, can compete with immediate collapse under pressure, since that reaction is characterized by loss of solvation.<sup>235</sup>

| fferences  |
|------------|
| ō          |
| Volume     |
| 7          |
| Activation |
| ≓          |
| BE         |
| ₹          |

| TABLE III    | TABLE III. Activation Volume Differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |          |             |                  |                                                   |          |                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|-------------|------------------|---------------------------------------------------|----------|---------------------------------------------------------|
| No.          | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solvent                             | r,<br>°C | P,<br>kbars | No. of<br>k data | $\Delta\Delta V^{\bullet}$ , cm <sup>3</sup> /mol | Ref      | Remarks                                                 |
| -            | PhN₂CPh₃Lage → Ph₄C → diffusion product (Pht)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c-C <sub>6</sub> H <sub>11</sub> Me | 09       | 2.5         | J.               | 0 +51                                             | 218      | In the presence of I <sub>2</sub>                       |
| 2            | $[c-C_6H_{11}CO_2O-t-Bu]_{cage} \qquad \qquad c-C_6H_{11}O-t-Bu + \left( \begin{array}{c} \\ \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .PrPh                               | 79.6     | <b>4</b> .1 | က                | 0                                                 | 62, 69   |                                                         |
| က            | [+BuON <sub>2</sub> O-+Bu] <sub>crige</sub> T* +BuOO-+Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_8H_{18}$                         | 45       | 4           | თ                | +11                                               | 71       |                                                         |
| 4            | L-BuOCO₂CH₂Ph] <sub>cage</sub> → diffusion products  [-BuOCO₂CH₂Ph] <sub>cage</sub> → diffusion products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FrPh                                | 79.6     | 6.1         | 4                | +30.0<br>0<br>+14                                 | 219      |                                                         |
|              | $\begin{bmatrix} c_1 \\ t \cdot Buoco_j cH_j - C \end{bmatrix} \xrightarrow{c_1} \begin{bmatrix} c_1 \\ t \cdot BuocH_2 - C \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>i</i> -PrPh                      | 79.6     | 6.1         | 4                | 0 ;                                               | 219      |                                                         |
| 9            | $\begin{bmatrix} -\text{BuOCO}_2\text{CH}_2 & \text{CI} \end{bmatrix}_{\text{cage}} + \frac{t \cdot \text{BuOCH}_2}{t \cdot \text{fift.ison products}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i-PrPh                              | 79.6     | 6.1         | 4                | + +<br>4 0 4                                      | 219      |                                                         |
| 7            | $\left[ \frac{1 - \text{Buoco}_2 \text{CH}_2}{\text{CHoc}_2 \text{CH}_2} \right]_{\text{Cross}} + \frac{1 - \text{Buoch}_2 \text{CH}_2}{\text{Cross}_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>i</i> -PrPh                      | 79.6     | 6.1         | 4                | <u>.</u> 0                                        | 219      |                                                         |
| 8            | c-C <sub>6</sub> H <sub>11</sub> CO <sub>2</sub> O- <i>t</i> -Bu] <sub>cope</sub> $\rightarrow c$ -C <sub>6</sub> H <sub>11</sub> O- <i>t</i> -Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>i</i> -PrPh                      | 79.6     | 4.1         | ю                | +12<br>0                                          | 62, a 69 |                                                         |
| 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PnMe                                | 35       | 4           | က                | -1<br>0<br>+2.8                                   | 220      | In the presence                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i-PrCH₂-1-Bu                        | 35       | 9           | 4                | +2.6                                              | 220      | of Ph <sub>2</sub> C—CH <sub>2</sub><br>In the presence |
| 10           | PhMe + i-PrPh NHS PhCH-Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CH <sub>2</sub> Cl <sub>2</sub>     | 50       | 4.9         | 4                | 0 1                                               | 221      | of Ph <sub>2</sub> C=CH <sub>2</sub>                    |
| =            | PhMe + PhEt NBS PhOS NBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH <sub>2</sub> Cl <sub>2</sub>     | 90       | 7.8         | 5                | c c c                                             | 221      |                                                         |
| 12           | PhMe + Ph,CH <sub>2</sub> NBS → PhCH <sub>2</sub> Br  → Ph,CHBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH <sub>2</sub> Ol <sub>2</sub>     | 90       | 4.9         | 4                | - 4.8<br>0 - 2.4                                  | 221      |                                                         |
| 13           | H, Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CH <sub>2</sub> Cl <sub>2</sub>     | 20       | 5.9         | 4                | 0                                                 | 222      |                                                         |
| ;            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 1        | ;           |                  | +2.50                                             | ;        |                                                         |
| <del>4</del> | $PhMc + \langle \bigcup \rangle \qquad NBS \qquad \Rightarrow PhCH,Br$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$ | CH <sub>2</sub> Cl <sub>2</sub>     | 70       | 6.<br>6.    | 4                | 0<br>+1.65                                        | 222      |                                                         |
| 15           | PhMe + CI $\longrightarrow$ NBS $\longrightarrow$ PhOH <sub>2</sub> Br $\longrightarrow$ CI $\longrightarrow$ CH <sub>2</sub> Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CH <sub>2</sub> Cl <sub>2</sub>     | 02       | 5.9         | 4                | 0 -1.10                                           | 222      |                                                         |

| _ | _ |
|---|---|
| 1 | 8 |
|   | • |
|   | į |
| į | ō |
| 5 | 2 |
| 1 |   |
| L | ų |
| = | ź |
|   | U |

| TABLE | TABLE III (Continued)                                                                               |                                 |    |       |        |                |     |         |
|-------|-----------------------------------------------------------------------------------------------------|---------------------------------|----|-------|--------|----------------|-----|---------|
|       |                                                                                                     |                                 | Τ, | ρ,    | No. of | ΔΔ <b>V</b> *, |     |         |
| No.   | Reaction                                                                                            | Solvent                         | ၁့ | kbars | k data | cm³/mol        | Ref | Remarks |
| 91    | $PhMe + \left( \begin{array}{c} B_r \\ \hline \\ \end{array} \right) - \frac{PhCH_2Br}{R_r} $       | CH <sub>2</sub> Cl <sub>2</sub> | 70 | 5.9   | 4      | 0              | 222 |         |
|       | My CH₂Br                                                                                            |                                 |    |       |        | -2.80          |     |         |
| 17    | PhMe + $O_2N$ $\longrightarrow$ NBS $\longrightarrow$ PhCH <sub>2</sub> Br                          | CH <sub>2</sub> Cl <sub>2</sub> | 70 | 5.9   | 4      | 0              | 222 |         |
|       | $O_2N - O_3B$                                                                                       |                                 |    | ٠     |        | -6.35          |     |         |
| 18    | PhMe + C,H <sub>16</sub> NBS PhCH <sub>2</sub> Br                                                   | CH <sub>2</sub> Cl <sub>2</sub> | 70 | 5.9   | 4      | 0<br>+6.1      | 221 |         |
| 19    | Phet reucol Photy.ch.zu                                                                             | Neat                            | 40 | 5.9   | 9      | 0              | 223 |         |
| 20    | FPIPh FBUOCI P PhOTOMACHACHACH                                                                      | Neat                            | 40 | 5.9   | S      | 0 0 8 -        | 223 |         |
|       | _                                                                                                   | Neat                            | 40 | 5.9   | 5      | 0.3            | 223 |         |
| 21    | PhMe + PhEt reuoci → PhCHCIMe                                                                       |                                 |    |       |        | -1.0<br>+6.7   |     |         |
|       |                                                                                                     | Neat                            | 20 | 5.9   | 4      | 0              | 223 |         |
| 22    | PhMe + <i>i</i> -PrPh +Buool → PhCIMe <sub>2</sub> → PhCIMe <sub>2</sub> → PhCIMeCH <sub>2</sub> Ci |                                 |    |       |        | -3.0<br>+5.9   |     |         |
| 23    | PhMe + t-BuPh revocit PhCH <sub>2</sub> Cl                                                          | Neat                            | 90 | 5.9   | 2      | 0 !            | 223 |         |
|       | ► PhCMe <sub>2</sub> CH <sub>2</sub> Ci                                                             |                                 |    |       |        | + 3. <i>/</i>  |     |         |
|       | Ph—C, J-Bu                                                                                          |                                 |    |       |        |                |     |         |
| 24    | Ph-j-Bu +                                                                                           |                                 |    | 9     | 4      | 0              | 224 |         |
|       | Ph—C                                                                                                |                                 |    |       |        |                |     |         |
|       |                                                                                                     |                                 |    |       |        | +8.1           |     |         |
|       | <u>~</u> €                                                                                          |                                 |    |       |        |                |     |         |
|       |                                                                                                     | CH <sub>2</sub> Cl <sub>2</sub> | 35 | 2.9   | 4      | 0              | 225 |         |
| 25    | ecoome coome                                                                                        |                                 |    |       |        |                |     |         |
|       | Сооме                                                                                               |                                 |    |       |        | +0.52          |     |         |
|       | COOMe                                                                                               |                                 |    |       |        |                |     |         |

| TABLE      | TABLE III (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |          |             |               |                                           |     |         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|-------------|---------------|-------------------------------------------|-----|---------|
| No.        | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solvent                         | 7,<br>°C | P,<br>kbars | No. of k data | $\Delta\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH <sub>2</sub> Cl <sub>2</sub> | 35       | 8           | က             | 0 .                                       | 225 |         |
| 32         | to the second se |                                 |          |             |               | +0.75                                     |     |         |
| 33         | COOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH <sub>2</sub> Cl <sub>2</sub> | 35       | 5.9         | 4             | 0                                         | 225 |         |
|            | COOMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |          |             |               | +0.82                                     |     |         |
| <b>3</b> 4 | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>2</sub> Cl <sub>2</sub> | 35       | 8           | en ,          | 0                                         | 225 |         |
|            | SS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |          |             |               | +0.99                                     |     |         |
| 38         | nd Bu Coome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH <sub>2</sub> Cl <sub>2</sub> | 35       | 2.9         | 4             | •                                         | 225 |         |
|            | Bu coome Coome Bu coome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |          |             |               | +0.83                                     |     |         |
| 36         | $\succ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>m</i> -Xylene                | 70       | 4.9         | က             | 0                                         | 226 |         |
|            | Menooc H COOMen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |          |             |               | 6.0-                                      |     |         |

TABLE III (Continued)

|                  | 236  | 236              |      |      | 236              |      |      | 236              |      |      |             | 236  |
|------------------|------|------------------|------|------|------------------|------|------|------------------|------|------|-------------|------|
| 0                | -2.2 | 0                | -2.0 | -3.6 | 0                | -5.7 | 9.7- | 0                | -3.5 | -7.5 | 0           | -6.2 |
|                  |      |                  |      |      |                  |      |      | 7                |      |      |             |      |
|                  |      |                  |      |      |                  |      |      | g                |      |      |             |      |
| 20               |      | 25               |      |      | 25               |      |      | 25               |      |      |             |      |
| H <sub>2</sub> 0 |      | H <sub>2</sub> 0 |      |      | H <sub>2</sub> O |      |      | H <sub>2</sub> O |      |      | <b>Н</b> 2О |      |

| No. | Reaction                                | Solvent          | r,<br>°C | P,<br>kbars | No. of k data | $\Delta\Delta V^*$ , cm <sup>3</sup> /mol | Ref   | Remarks |
|-----|-----------------------------------------|------------------|----------|-------------|---------------|-------------------------------------------|-------|---------|
|     |                                         | H <sub>2</sub> O | 25       |             |               | 0                                         | 236   |         |
| 53  |                                         |                  |          |             |               | -3.0                                      |       |         |
|     | #o                                      |                  |          |             |               | -2.4                                      |       |         |
|     |                                         | O <sup>2</sup> H | 25       |             |               | 0                                         | 236   |         |
| 54  |                                         |                  |          |             |               | -2.0                                      |       |         |
|     | HO                                      |                  |          |             |               | -3.0                                      |       |         |
|     |                                         | H <sub>2</sub> O | 25       |             |               | o                                         | . 236 |         |
| 55  |                                         |                  |          |             |               | -1.9                                      |       |         |
|     | # T T T T T T T T T T T T T T T T T T T |                  |          |             |               | -4.9                                      |       |         |

TABLE III (Continued)

| <i>t</i> -BuOH-MeCN                            | 25             | 4.  | 4     | 0                    | 237               | с<br>меси 33 v%                              |
|------------------------------------------------|----------------|-----|-------|----------------------|-------------------|----------------------------------------------|
|                                                |                |     |       | 0>                   |                   |                                              |
| MeOH-dioxane<br>EtOH-dioxane<br>i-PrOH-dioxane | 06<br>06       | ນູນ | 0 0 0 | 0 0 0                | 148<br>148<br>148 | q                                            |
| MeOH-dioxane<br>EtOH-dioxane<br>i-PrOH-dioxane |                |     |       | +13°<br>+7°<br>+12°  |                   | [MeOH] = 8 M<br>[EtOH] = 8 M<br>[PrOH] = 8 M |
| h <sub>2</sub> 0                               |                | 2.1 | ю     | 0                    | 36                |                                              |
|                                                | 15<br>25<br>35 |     |       | +4.0<br>+3.3<br>+2.4 |                   |                                              |
| АсОН                                           | 45             |     |       | 0                    | 238               |                                              |
|                                                |                | 2   | ဇ     | +2.1                 |                   |                                              |
|                                                |                | 2   | ဗ     | +1.2                 |                   |                                              |
|                                                |                | 8   | ဗ     | +3.2                 |                   |                                              |
|                                                |                | 2   | ဗ     | +0.6                 |                   |                                              |
|                                                |                | 2   | ဗ     | +1.6                 |                   |                                              |
|                                                |                | 2   | ဗ     | +3.5                 |                   |                                              |

| ₹   | ٦ |
|-----|---|
| - 6 | ĸ |
| 3   | H |
| -   | 2 |
| •   | ۰ |
|     | : |
|     | - |
| •   | 3 |
| •   | 5 |
|     | ť |
| c   | 1 |
|     |   |
| -   | _ |
|     |   |
| _   |   |
|     |   |
| Ē   |   |
| Ē   |   |
| Ì   | 4 |
| Ē   |   |
|     |   |
|     |   |
|     |   |

| I ABLE III (Continued) | minued)                                                                 |         |          |             |               |                                           |     |         |
|------------------------|-------------------------------------------------------------------------|---------|----------|-------------|---------------|-------------------------------------------|-----|---------|
| o<br>Z                 | Reaction                                                                | Solvent | 7.<br>°C | P,<br>kbars | No. of k data | $\Delta\Delta V^*$ , cm <sup>3</sup> /mol | Ref | Remarks |
|                        | \v^*0                                                                   |         |          |             |               |                                           |     |         |
| <b></b>                | Ph—Ph + HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> Ph              |         |          | 2           | 4             | +6.2                                      |     |         |
|                        | O <sub>3</sub> N                                                        |         |          | 2           | 4             | 9.9+                                      |     |         |
| <b></b>                | PhF + HNO <sub>3</sub> $\frac{1}{H_2SO_4}$ F F NO <sub>2</sub>          |         |          | 8           | က             | +0.1                                      |     |         |
|                        |                                                                         |         |          | 2           | က             | -3.1                                      |     |         |
|                        |                                                                         |         |          | 5           | ဇ             | +0.4                                      |     |         |
| <b>u</b> .             | PhCI + HNO <sub>3</sub> $\frac{1}{H_2SO_4}$ CI CI NO <sub>2</sub>       |         |          | ٥           | ဇာ            | -1.2                                      |     |         |
|                        |                                                                         |         |          | 2           | ო             | -5.0                                      |     |         |
|                        |                                                                         |         |          | 2           | ဗ             | -0.5                                      |     |         |
| <b>u-</b>              | PhBr + HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> Br               |         |          | 2           | က             | -2.0                                      |     |         |
|                        |                                                                         |         |          | 2           | ဗ             | -5.2                                      |     |         |
|                        | $\longrightarrow \operatorname{Br} \longrightarrow \operatorname{No}_2$ |         |          | 2           | ဗ             | 1.1                                       |     |         |

<sup>a</sup> Product yields in the decomposition of *tert*-butyl phenylperacetate in cumene and chlorobenzene at 1 and 4000 atm are also given in this paper. <sup>b</sup> Estimated from the optical rotation of the product by the present authors. <sup>c</sup> The free oximate ion and the ion pair exist in equilibrium under the reaction conditions.

At high dilution O-alkylation decreases with pressure.  $^d$  The reaction of alkoxide ion with the same substrate was studied. See ref 148.  $^o$  Calculated from the product ratios by the present authors.  $^t$  Men = (-)-menthyl.

An extensive investigation of the allylation of phenoxide ions was aimed at the question of the generality of the proposition that sterically hindered reactions are enhanced more than unhindered ones. The reaction of the parent phenol under pressure had revealed that the transition state for O-alkylation is more voluminous than that for ortho alkylation, which in turn is larger than that for the formation of the para isomer; this had been interpreted in terms of a need for desolvation of the nucleophile prior to displacement. The same trend is visible in the series of 4-mono-, and 3,5- and 2,6-disubstituted phenols; however, the special effects one might have expected on steric grounds do not show up. Thus, while  $V_{\rm O}^* - V_{\rm p}^{\pm}$  equals 7.6 cm<sup>3</sup>/mol in the parent case, it is 7.5 cm<sup>3</sup>/mol in the presence of 3,5-diisopropyl substitution! The other results lead to similar conclusions, and one can only summarize by saying that the large, special pressure effect in hindered Menshutkin reactions has to date found

no parallel in other chemistry.

The methylation of fluorenone oxime takes place in ion-pair stages, free ions producing the O-methyl derivative and ion pairs the N isomer. As a result one might expect that O-methylation would be favored under pressure, opposite to the result with the phenoxides. This was indeed observed. 237

A comparison of the pressure effects of nitration of benzene and of substituted benzenes has been carried out. 238 Again, no systematic favoring of the more hindered products was observed. Certain regularities do appear in  $\Delta\Delta\,\textit{V}^{\ddagger}$  as a function of substituent; these may have the same origin as did Zhulin's results referred to above.

# IV. Activation Volumes of Inorganic Reactions

## A. The Data in Tabular Form (Table IV)

TABLE IV. Activation Volumes for Reactions of Inorganic Compounds a

| lo. | Reaction                                                                                                                                                                                                      | Solvent                         | <i>T</i> , °C | <i>P</i> , kbars | No. of<br>k data | $\Delta V^*$ , cm $^3$ /mol | Ref        | Remarks                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|------------------|------------------|-----------------------------|------------|-------------------------------------------|
| 1   | K <sub>3</sub> [Co(ox) <sub>3</sub> ]⋅xH <sub>2</sub> O → racemic mixture                                                                                                                                     | solid                           | 23-28         | 44.4             | 8                | -1.54                       | 239        | P ≥ 8 kbars                               |
| 2   |                                                                                                                                                                                                               | solid                           | 23-28         | 46.6             | 7                | -1.79                       | 239        | $P \ge 16.1  \text{kbars}$                |
| 3   | [Ni(phen) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub> •2H <sub>2</sub> O → racemic mixture                                                                                                                 | solid                           | 21            | 42               | 10               | -1.00                       | 240        | <i>P</i> ≥ 10.3 kbars                     |
|     | $(-)$ - $K_3[Cr(ox)_3] \rightarrow (\pm)$ - $K_3[Cr(ox)_3]$                                                                                                                                                   | H <sub>2</sub> O                | 15.0          | 1.4              | 5                | -16.3                       | 241        | [HCI] = 0.05 M                            |
|     | (+)-K[Cr(ox)₂(phen)] → (±)-<br>K[Cr(ox)₂(phen)]                                                                                                                                                               | H <sub>2</sub> O                | 25.0          | 1.4              | 5                | -12.3                       | 241        | [HCI] = 0.05 M                            |
|     | $(+)$ -K[Cr(ox) <sub>2</sub> (bpy)] $\rightarrow$ ( $\pm$ )-<br>K[Cr(ox) <sub>2</sub> (bpy)]                                                                                                                  | H <sub>2</sub> O                | 25.0          | 1.4              | 5                | -12.0                       | 241        | [HCI[ = 0.05 M                            |
|     | $(+)$ -[Cr(ox)(phen) <sub>2</sub> ]ClO <sub>4</sub> $\rightarrow$ (±)-<br>[Cr(ox)(phen) <sub>2</sub> ]ClO <sub>4</sub>                                                                                        | H <sub>2</sub> O                | 45.0          | 2.1              | 4                | -1.5                        | 241        | [HCI] = 0.05 M                            |
| ļ   | $(+)-[Cr(ox)(bpy)_2]PF_6 \rightarrow (\pm)-[Cr(ox)(bpy)_2]PF_6$                                                                                                                                               | H₂O                             | 45.0          | 2.1              | 4                | -1.0                        | 241        | [HCI] = 0.05 M                            |
|     | (−)-[Cr(phen) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>3</sub> → (±)-<br>[Cr(phen) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>3</sub>                                                                               | H₂O                             | 75.0          | 2.1              | 4                | +3.3                        | 241        | [HCI] = 0.05 M                            |
| )   | $(-)-[Cr(bpy)_3](CIO_4)_3 \rightarrow (\pm)-[Cr(bpy)_3](CIO_4)_3$                                                                                                                                             | H <sub>2</sub> O                | 75.0          | 2.1              | 4                | +3.4                        | 241        | [HCI] = 0.05 M                            |
|     | $trans$ -Co(en) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> <sup>3+</sup> $\rightarrow cis$ - Co(en) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> <sup>3+</sup>                                              | H <sub>2</sub> O                | 34.5          | 1.0              | 5                | +14.3                       | 242        | $[HCIO_4] = 0.05 M$                       |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 46.0          | 0.9              | 5                | +14.2                       | 242        | $[HCIO_4] = 0.05 M$                       |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 48.0          | 1.0              | 5                | +14.2                       | 242        | $[HClO_4] = 0.5 M$                        |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 45.0          | 1.4              | 7                | +12.6                       | 242        | $[HCIO_4] = 1 M$                          |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 45.0          | 1.0              | 5                | +13.7                       | 242        | $[NaClO_4] = 1 M$                         |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 50.5          | 1.0              | 5                | +13.7                       | 242        | $[HCIO_4] = 1 M$                          |
|     | $trans$ -Cr(ox) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> $^- \rightarrow cis$ - Cr(ox) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> $^-$                                                                  | H <sub>2</sub> O−THF            | 25            | 2.5              | 9                | -16                         | 243        | 50–100 wt % H <sub>2</sub> O              |
|     | 01(01/2(01/2/2                                                                                                                                                                                                | H₂O-MeOH                        | 25            | 2.5              | 9                | <del></del> 16              | 243        | 50-100 wt % H <sub>2</sub> O              |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 25            | 2.5              | 9                | -10                         | 243        | 0.2 M Ca(NO <sub>3</sub> ) <sub>2</sub>   |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 25            | 2.5              | 9                | 5.5                         |            |                                           |
|     | $\beta$ -Co(edda)tn <sup>+</sup> $\rightarrow \alpha$ -Co(edda)tn <sup>+</sup>                                                                                                                                | H <sub>2</sub> O                | 58.6          |                  |                  |                             | 243        | 0.2 M HCIO <sub>4</sub>                   |
|     | $\beta$ -Co(edda) $\epsilon$ n <sup>+</sup> $\rightarrow \alpha$ -Co(edda) $\epsilon$ n <sup>+</sup>                                                                                                          | _                               |               | 3                | 4                | +145                        | 244        | 0.2 M carbonate buffe                     |
|     | trans-Co(en) <sub>2</sub> (SeO <sub>3</sub> )OH <sub>2</sub> <sup>+</sup> $\rightarrow$ cis-<br>Co(en) <sub>2</sub> (SeO <sub>3</sub> )OH <sub>2</sub> <sup>+</sup>                                           | H₂O<br>H₂O                      | 63.6<br>15    | 3                | 4                | +20.0 <sup>b</sup><br>+7.6  | 244<br>246 | 0.2 M carbonate buffe                     |
|     | $Co(en)_3^{2+} + {^*}Co(en)_3^{3+} \rightarrow Co(en)_3^{3+} + {^*}Co(en)_3^{2+}$                                                                                                                             | H <sub>2</sub> O                | 65            |                  |                  | 19.8                        | 246        | $\mu = 0.5 \text{ M (CIO}_4^-)$           |
| ;   | Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>2+</sup> + *Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>3+</sup> ···→<br>Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>3+</sup> + *Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>2+</sup> | H₂O                             | 2             | 2                |                  | -12.2°                      | 246        |                                           |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 2             | 2                |                  | -0.4 d                      | 246        |                                           |
|     | $Cr(OH_2)^{2+} + Cr(OH_2)_3OH^{2+} \rightarrow Cr(OH_2)^{3+} + Cr(OH_2)_5OH^{+}$                                                                                                                              | H <sub>2</sub> O                | 25            |                  |                  | +4.2                        | 246        | $\mu = 0.5 \mathrm{M} (\mathrm{CIO_4}^-)$ |
|     | $TI(OH_2)_6^+ + *TI(OH_2)_6^{3+} \rightarrow TI(OH_2)_6^{3+} + *TI(OH_2)_6^+$                                                                                                                                 | H <sub>2</sub> O                | 30            | 2                | 4                | -13.2                       | 247        | 4.5 M HCIO <sub>4</sub>                   |
|     |                                                                                                                                                                                                               | H <sub>2</sub> O                | 30            | 2.7              | 7                | -13.2                       | 247        | 1.1 M HCIO <sub>4</sub>                   |
|     | TaBr <sub>5</sub> OMe <sub>2</sub> + Me <sub>2</sub> O * → TaBr <sub>5</sub> OMe <sub>2</sub> * + Me <sub>2</sub> O                                                                                           | CH <sub>2</sub> CI <sub>2</sub> | 13.0          | 1.8              | 6                | +30.5                       | 248        | By <sup>1</sup> H NMR                     |
|     | $TaBr5SMe2 + *Me2S \rightarrow TaBr5SMe2* + Me2S$                                                                                                                                                             | CH₂CI₂                          | 12.5          | 2.1              | 6                | -12.6                       | 248        | By <sup>1</sup> H NMR                     |
|     | Co(NH <sub>3</sub> ) <sub>5</sub> (DMSO <sup>3+</sup> - $d_6$ ) + DMSO $\rightarrow$<br>Co(NH <sub>3</sub> ) <sub>5</sub> DMSO + DMSO- $d_6$                                                                  | DMSO                            | 45            | 2                | 4                | +10.0                       | 249        |                                           |
| }   | $Cr(DMSO)_6^{3+} + 6DMSO-d_6 \rightarrow$<br>$Cr(DMSO-d_6)_6^{3+} + 6DMSO$                                                                                                                                    | DMSO-d <sub>6</sub>             | 75            | 3                | 6                | -11.3                       | 250        |                                           |

| No.      | Reaction                                                                                                                                                                                                                                     | Solvent           | <i>T</i> , °C | P, kbars   | No. of<br>k data | $\Delta V^{\star}$ , cm $^3$ /mol | Ref        | Remarks                                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|------------|------------------|-----------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 34       | $Cr(DMF-d_7)_6^{3+} + 6DMF \rightarrow$                                                                                                                                                                                                      | DMF               | 65.1          | 4          | 8                | -6.3                              | 251        |                                                                                                                                     |
| 35       | $Cr(DMF)_6^{3+} + 6DMF - d_7$<br>$trans-Co(en)_2(^{18}OH_2)_2^{3+} \rightarrow$                                                                                                                                                              | H <sub>2</sub> O  | 34.8          | 3          | 7                | +5.9                              | 252        | $[HCIO_4] = 0.8 M,$                                                                                                                 |
| 36       | trans-Co(en) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> <sup>3+</sup><br>trans-Co(en) <sub>2</sub> (SeO <sub>3</sub> H)*OH <sub>2</sub> <sup>2+</sup> +<br>H <sub>2</sub> O $\rightarrow trans$ -Co(en) <sub>2</sub> (SeO <sub>3</sub> H)- | H <sub>2</sub> O  | 25            |            |                  | +8.0                              | 246        | $\mu$ = 2.0 m                                                                                                                       |
| 37       | $OH_2^{2+} + H_2O^*$<br>$Cr(OH_2)_6^{3+} + H_2O^* \rightarrow Cr(OH_2)_5^-$<br>$^*OH_2^+ + H_2O$                                                                                                                                             | H <sub>2</sub> O* | 45            | 2.5        | 7                | -9.3                              | 253        | $[HCIO_4] = 0.1 M$                                                                                                                  |
| 38       | $Cr(NH_3)_5 OH_2^{3+} + H_2O \rightarrow Cr(NH_3)_5 OH_2^{3+} + H_2O^*$                                                                                                                                                                      | H <sub>2</sub> O  | 25            | 2.1        | 5                | -5.8                              | 254        | $[HCIO_4] = 0.1 M$                                                                                                                  |
| 39       | $Ir(NH_3)_5 \cdot OH_2^{3+} + H_2O \rightarrow$<br>$Ir(NH_3)_5 OH_2^{3+} + H_2O \cdot$                                                                                                                                                       | H <sub>2</sub> O  | 70.5          | 4          | 6                | -3.2                              | 255        | $[HCIO_4] = 0.01 M$                                                                                                                 |
| 40       | Rh(NH <sub>3</sub> ) <sub>4</sub> *OH <sub>2</sub> <sup>3+</sup> + H <sub>2</sub> O $\rightarrow$<br>Rh(NH <sub>3</sub> ) <sub>5</sub> OH <sub>2</sub> <sup>3+</sup> + H <sub>2</sub> O*                                                     | H <sub>2</sub> O  | 35            | 2.1        | 5                | -4.1                              | 254        | [HCIO <sub>4</sub> ] = 0.01 M                                                                                                       |
| 41       | $Co(NH_3)_5NCS^{2+} + H_2O \rightarrow$<br>$Co(NH_3)_5OH_2^{3+} + NCS^{-}$                                                                                                                                                                   | H <sub>2</sub> O  | 88            | 2.6        | 3                | -4.0                              | 256        | $\mu = 0.1 \text{ M (CIO}_4^-)$                                                                                                     |
| 42       | $Co(NH_3)_5NO_3^{2+} + H_2O \rightarrow Co(NH_3)_5OH_2^{3+} + NO_3^{-}$                                                                                                                                                                      | H <sub>2</sub> O  | 25            | 4.1        | 18               | -6.3                              | 257        | $\Delta V = -7.2 \text{ cm}^3/\text{mol}^{9}$                                                                                       |
| 43       | Co(NH <sub>3</sub> ) <sub>5</sub> Br <sup>2+</sup> + H <sub>2</sub> O $\rightarrow$<br>Co(NH <sub>3</sub> ) <sub>5</sub> OH <sub>2</sub> <sup>3+</sup> + Br <sup>-</sup>                                                                     | H <sub>2</sub> O  | 25            | 4.1        | 7                | -9.2                              | 256<br>257 | [LiClO <sub>4</sub> ] = 0.1 M<br>$\Delta V = -10.8 \text{ cm}^3/\text{mol}^{9}$                                                     |
| 44       | 55(11.3/3511/2                                                                                                                                                                                                                               |                   | 20            | 2.0        | 4                | 105                               | 256<br>258 | $[LiClO_4] = 0.1 M$                                                                                                                 |
| 44<br>45 | $Co(NH_3)_5Cl^{2+} + H_2O \rightarrow Co(NH_3)_5OH_2^{3+} + Cl^-$                                                                                                                                                                            | H₂O<br>H₂O        | 30<br>25      | 2.9<br>4.1 | 4<br>8           | +2.5<br>-10.6                     | 258<br>257 | $\Delta V = -11.6 \text{ cm}^3/\text{mol}^{9}$                                                                                      |
|          | CO(14113)5OF12** + OI                                                                                                                                                                                                                        |                   |               |            |                  |                                   | 256        | $[LiClO_4] = 0.1 M$                                                                                                                 |
| 46<br>47 | Co(NH <sub>3</sub> ) <sub>5</sub> SO <sub>4</sub> <sup>+</sup> + H <sub>2</sub> O →                                                                                                                                                          | H₂O<br>H₂O        | 59.8<br>25    | 1.4<br>4.1 | 4<br>6           | −7.5<br>−18.5                     | 259<br>257 | $[HCIO_4] = 0.1 \text{ M}$<br>$\Delta V = -19.2 \text{ cm}^3/\text{mol}^9$                                                          |
| 71       | $Co(NH_3)_5OH_2^{3+} + SO_4^{2-}$                                                                                                                                                                                                            | 1120              | 25            | 7.1        | Ů                | -10.5                             | 256        | $[LiClO_4] = 0.1 M$                                                                                                                 |
| 48       | $Co(NH_3)_5N_3^{2+} + H_2O \rightarrow$<br>$Co(NH_3)_5OH_2^{3+} + N_3^{-}$                                                                                                                                                                   | H <sub>2</sub> O  | 75            | 4.1        | 10               | +16.8                             | 256        | $[LiCIO_4] = 0.1 M$                                                                                                                 |
| 49       | $trans\text{-}Co(en)_2Cl_2^+ + H_2O \rightarrow$ $Co(en)_2(OH_2)Cl^{2+} + Cl^-$                                                                                                                                                              | H <sub>2</sub> O  | 19            | 2.5        | 4                | +11.6                             | 260        | At pH 3.3                                                                                                                           |
| 50       |                                                                                                                                                                                                                                              | H <sub>2</sub> O  | 25            | 2.5        | 4                | +11.0                             | 260        | At pH 3.3                                                                                                                           |
| 51       |                                                                                                                                                                                                                                              | H <sub>2</sub> O  | 40            | 2.5        | 4                | +9.45                             | 260        | At pH 3.3                                                                                                                           |
| 52       | 0 (011) NO 24 1 1 1 0                                                                                                                                                                                                                        | H <sub>2</sub> O  | 55            | 2.5        | 4                | +7.87                             | 260        | At pH 3.3                                                                                                                           |
| 53       | $Cr(OH_2)_5NO_3^{2+} + H_2O \rightarrow$<br>$Cr(OH_2)_6^{3+} + NO_3^{-}$                                                                                                                                                                     | H <sub>2</sub> O  | 25            | 2          | 5                | -12.7                             | 261        | $[HCIO_4] = 1.1 \text{ M}$                                                                                                          |
| 54<br>55 | $Cr(OH_2)_5 ^{2+} + H_2O \rightarrow Cr(OH_2)_6^{3+} + I^-$                                                                                                                                                                                  | H₂O<br>H₂O        | 25<br>25      | 2.5<br>2.5 | 7<br>7           | -5.4°<br>-1.6°                    | 262<br>262 | $\Delta V = -3.3 \text{ cm}^3/\text{mol}$<br>1 m HClO <sub>4</sub> -ClO <sub>4</sub> -<br>$\Delta V = -3.3 \text{ cm}^3/\text{mol}$ |
| 56       | $Cr(NH_3)_5NCS^{2+} + H_2O \rightarrow$                                                                                                                                                                                                      | H <sub>2</sub> O  | 79.8          | 1.4        | 4                | -8.6                              | 259        | $1 \text{ m HClO}_4 - \text{ClO}_4^-$ $[\text{HClO}_4] = 0.1 \text{ M}$                                                             |
| 57       | $Cr(NH_3)_5OH_2^{3+} + NCS^-$<br>$Cr(NH_3)_2(NCS)_4^- + H_2O \rightarrow$                                                                                                                                                                    | H <sub>2</sub> O  | 50            | 2.1        | 4                | -2.4                              | 263        | $[HCIO_4] = 0.1 \text{ M}$<br>$[HCIO_4] = 0.006 \text{ M}$                                                                          |
|          | $Cr(NH_3)_2(NCS)_3OH_2 + NCS^-$                                                                                                                                                                                                              |                   |               |            |                  |                                   |            |                                                                                                                                     |
| 58       | $Cr(NCS)_6^{3-} + H_2O \rightarrow$<br>$Cr(NCS)_5OH_2^{2-} + NCS^-$                                                                                                                                                                          | H₂O               | 50            | 2.1        | 5                | +16                               | 263        | $[HCIO_4] = 0.006 M$                                                                                                                |
| 59       | $Cr(NH_3)_5l^{2+} + H_2O \rightarrow$<br>$Ce(NH_3)_5OH_2^{3+} + I^-$                                                                                                                                                                         | H₂O               | 25            | 3.5        | 7                | -9.4                              | 264        | $\Delta V = -6.0 \text{ cm}^3/\text{mol}$<br>[NH <sub>4</sub> ClO <sub>4</sub> ] = 0.1 m                                            |
| 60       | $Cr(NH_3)_5Br^{2+} + H_2O \rightarrow Cr(NH_3)_5OH_2^{3+} + Br^{-}$                                                                                                                                                                          | H <sub>2</sub> O  | 25            | 4          | 9                | -10.2                             | 264        | $\Delta V = -7.2 \text{ cm}^3/\text{mol}$<br>[NH <sub>4</sub> ClO <sub>4</sub> ] = 0.1 m                                            |
| 61       | $Cr(NH_3)_5Cl^{2+} + H_2O \rightarrow$<br>$Cr(NH_3)_5OH_2^{3+} + Cl^-$                                                                                                                                                                       | H₂O               | 25            | 3.1        | 6                | -10.8                             | 264        | $\Delta V = -8.4 \text{ cm}^3/\text{mol}$ $[\text{NH}_4\text{ClO}_4] = 0.1 \text{ m}$                                               |
| 62       | $Fe(phen)_3^{2+} + 6H_2O \rightarrow$ $Fe(OH_2)_6^{2+} + 3phen$                                                                                                                                                                              | H₂O               | 35            | 1.4        | 3                | +15.4                             | 265        | $[H_2SO_4] = 1 M$                                                                                                                   |
| 63       | Fe(5-NO <sub>2</sub> -phen) <sub>3</sub> <sup>2+</sup> + 6H <sub>2</sub> O $\rightarrow$<br>Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>2+</sup> + 3(5-NO <sub>2</sub> -phen)                                                                     | H₂O               | 35            | 1.7        | 6                | +17.9                             | 265        | $[H_2SO_4] = 1 M$                                                                                                                   |
| 64       | Fe(4,7-Me <sub>2</sub> -phen) <sub>3</sub> <sup>2+</sup> + 6H <sub>2</sub> O $\rightarrow$ Fe(OH <sub>2</sub> ) <sub>6</sub> <sup>2+</sup> + 3(4,7-Me <sub>2</sub> -phen)                                                                    | H₂O               | 35            | 1.4        | 5                | +11.6                             | 265        | $[H_2SO_4] = 1 M$                                                                                                                   |
| 65       | $PtCl_4^{2-} + H_2O \rightarrow PtCl_3(OH_2)^- + Cl^-$                                                                                                                                                                                       | H <sub>2</sub> O  | 25            | 1.2        | 8                | -17                               | 266        |                                                                                                                                     |
| 66       | Pt(NH <sub>3</sub> )CI <sub>3</sub> <sup>-</sup> + H <sub>2</sub> O $\rightarrow$<br>Pt(NH <sub>3</sub> )CI <sub>2</sub> (OH <sub>2</sub> ) + CI <sup>-</sup>                                                                                | H <sub>2</sub> O  | 26            | 1.1        | 9                | -14                               | 266        |                                                                                                                                     |
| 67       | $Cr(OH_2)_6^{3+} + OH^- \rightarrow H_2O + Cr(OH_2)_5OH^{2+}$                                                                                                                                                                                | H <sub>2</sub> O  |               |            |                  | -3.8                              | 267        |                                                                                                                                     |
| 68       | $Co(NH_3)_5Cl^{2+} + OH^- \rightarrow Co(NH_3)_5OH^{2+} + Cl^-$                                                                                                                                                                              | H <sub>2</sub> O  | 35            | 1.5        | 4                | +33.4                             | 268        | Carbonate buffer; k corrected for p effect on D                                                                                     |
| 69       | $Co(NH_3)_5SO_4^+ + OH^- \rightarrow Co(NH_3)_5OH^{2+} + SO_4^{2-}$                                                                                                                                                                          | H₂O               | 15            |            |                  | +19.5                             | 246        |                                                                                                                                     |

TABLE IV (Continued)

| No.        | Reaction                                                                                                                                                                                                               | Solvent                        | <i>T</i> , °C | P, kbars   | No. of<br>k data | $\Delta V^*$ , cm $^3$ /mol    | Ref        | Remarks                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------|------------------|--------------------------------|------------|----------------------------------------------------------------------------------------------------------------|
| 70         | $Co(NH_3)_5SeO_3^+ + OH^- \rightarrow Co(NH_3)_5OH^{2+} + SeO_3^{2-}$                                                                                                                                                  | H <sub>2</sub> O               | 25            |            |                  | <b>—17.1</b>                   | 246        |                                                                                                                |
| 71         | $CO(NH_3)_5OH^{2+} + SeO_3^{-1}$<br>$CO(NH_3)_5PO_4 + OH^{-} \rightarrow$<br>$CO(NH_3)_5OH^{2+} + PO_4^{3-}$                                                                                                           | H <sub>2</sub> O               | 55            |            |                  | +28.9                          | 246        |                                                                                                                |
| 72         | Pt(dien)Br <sup>+</sup> + OH <sup>-</sup> → Pt(dien)OH <sup>+</sup><br>+ Br <sup>-</sup>                                                                                                                               | H <sub>2</sub> O               | 25            | 1.5        | 8                | <del>-</del> 18.0 <sup>/</sup> | 269        | $[OH^{-}] = 0.01 \text{ M}$<br>$\mu = 0.2 \text{ M (NaClO}_4)$                                                 |
| 73         | Co(en) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> <sup>3+</sup> ·HC <sub>2</sub> O <sub>4</sub> <sup>-</sup> $\rightarrow$<br>Co(en) <sub>2</sub> ox <sup>+</sup> + H <sup>+</sup>                                   | H₂O                            |               |            |                  | +4.7                           | 246        | μ. ο.Σ (Δο. <b>ο.4</b> )                                                                                       |
| 74         | cis-Co(en) <sub>2</sub> (OH <sub>2</sub> ) <sub>2</sub> <sup>3+</sup> + H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> → Co(en) <sub>2</sub> C <sub>2</sub> O <sub>4</sub> <sup>+</sup> + 2H <sub>2</sub> O <sup>+</sup> | H <sub>2</sub> O               | 60.0          | 1.5        | 4                | +4.8                           | 270        | $g$ , [HNO <sub>3</sub> ] = 0.5 M, $\mu$ = 2.0 M (NaNO <sub>3</sub> )                                          |
| 75         | cis-Co(en) <sub>2</sub> (OH)OH <sub>2</sub> <sup>2+</sup> + C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> → Co(en) <sub>2</sub> (OH)C <sub>2</sub> O <sub>4</sub> + H <sub>2</sub> O                                     |                                | 30            | 1.6        | 4                | +4.6                           | 270        | h, pH 7.2, Trizma buffer,<br>$\mu = 0.32 \text{ M (NaNO}_3)$                                                   |
| 76         | $Co(en)_2(OH)C_2O_4 + H^+ \rightarrow Co(en)_2C_2O_4^+ + H_2O$                                                                                                                                                         | H <sub>2</sub> O               | 50.0          | 1.4        | 5                | 0                              | 270        | <i>i</i> , pH 7.8, Trizma buffer $\mu = 0.37 \text{ M (NaNO}_3)$                                               |
| 77         | Co(en) <sub>2</sub> (ox)OH <sub>2</sub> <sup>+</sup> $\rightarrow$ Co(en) <sub>2</sub> ox <sup>+</sup><br>+ H <sub>2</sub> O                                                                                           | H <sub>2</sub> O               |               |            |                  | +3.5                           | 246        | Ring closure                                                                                                   |
| 78         | $Cr(OH_2)_6^{3+} + ox \rightarrow Cr(OH_2)_4 ox^+ + 2H_2O$                                                                                                                                                             | H <sub>2</sub> O               | 25            | 1.5        | 7                | -2.2                           | 271        | At pH 2.7, $\mu = 1 \text{ M}$                                                                                 |
| 79         | $Cr(OH_2)_4Ox^+ + ox \rightarrow Cr(OH_2)_2(ox)_2^- + 2H_2O$                                                                                                                                                           | H <sub>2</sub> O               | 25            | 2          | 8                | -8.2                           | 271        | At pH 2.7, $\mu = 1 \text{ M}$                                                                                 |
| 80         | $Cr(OH_2)_2(Ox)_2^- + Ox \rightarrow Cr(Ox)_3^{3-} + 2H_2O$                                                                                                                                                            | H <sub>2</sub> O               | 25            | 2          | 8                | -10.0                          | 271        | At pH 2.7, $\mu = 1 \text{ M}$                                                                                 |
| 81         | Fe <sup>3+</sup> + NCS <sup>-</sup> → FeNCS <sup>2+</sup>                                                                                                                                                              | H <sub>2</sub> O               | 25            | 1.4        | 3                | +5<br>∼+6                      | 272        | P-jump, <i>j</i>                                                                                               |
| 82         |                                                                                                                                                                                                                        | H₂O                            | 25            | 2          | 5                | −4.9<br>~ +4.4                 | 273        | T-jump, $\mu = 0.2 \text{ m}$<br>(NaClO <sub>4</sub> ), $\Delta V = +8.9 \text{ cm}^3/\text{mol}$              |
| 83         | FeOH <sup>2+</sup> + NCS <sup>-</sup> → Fe(OH)NCS <sup>+</sup>                                                                                                                                                         | H <sub>2</sub> O               | 25            | 2          | 5                | +7.1                           | 273        | T-jump, $\mu = 0.2 \text{ m}$<br>(NaClO <sub>4</sub> )                                                         |
| 84         | $Fe^{3+} + CI^{-} \rightarrow FeCI^{2+}$                                                                                                                                                                               | H <sub>2</sub> O               | 25            | 2.8        | 5                | -4.5                           | 274        | T-jump, $c \mu = 1.5 \text{ M}$<br>(NaClO <sub>4</sub> )                                                       |
| 85         | FeCl <sup>2+</sup> → Fe <sup>3+</sup> + Cl <sup>-</sup>                                                                                                                                                                | H₂O                            | 25            | 2.8        | 5                | -9.2                           | 274        | T-jump, $c \mu = 1.5 \text{ M}$<br>(NaClO <sub>4</sub> ), $\Delta V = -4.6$<br>cm <sup>3</sup> /mol            |
| 86         | $Fe^{3+} + CI^- \rightarrow FeCI^{2+}$                                                                                                                                                                                 | H <sub>2</sub> O               | 25            | 2.8        | 5                | +6.8                           | 274        | T-jump, $\mu = 1.5 \text{ M}$<br>(NaClO <sub>4</sub> ), d, $k$                                                 |
| 87         | $FeCl^{2+} \rightarrow Fe^{3+} + Cl^{-}$                                                                                                                                                                               | H₂O                            | 25            | 2.8        | 5                | +2.2                           | 274        | T-jump, $\mu = 1.5 \text{ M}$<br>(NaClO <sub>4</sub> ), d, l                                                   |
| 88         | [Fe(CN) <sub>5</sub> (3,5-Me <sub>2</sub> -py)] <sup>3-</sup> + CN <sup>-</sup><br>→ [Fe(CN) <sub>6</sub> ] <sup>4-</sup> + 3,5-Me <sub>2</sub> -py                                                                    | H₂O                            | 25            | 1.4        | 5                | +20.5                          | 275        | $\mu = 0.5 \text{ M (NaClO}_4)$                                                                                |
| 89         | $[Fe(CN)_5(3,5-Me_2-py)]^{3-} + pz \rightarrow$<br>$[Fe(CN)_5(pz)]^{3-} + 3,5-Me_2-py$                                                                                                                                 | H <sub>2</sub> O               | 25            | 1.4        | 5                | +21.2                          | 275        | $\mu = 0.5 \text{ M (NaClO}_4)$                                                                                |
| 90         | [Fe(CN) <sub>5</sub> (3,5-Me <sub>2</sub> -py)] <sup>3-</sup> + imH<br>→ [Fe(CN) <sub>5</sub> (imH)] <sup>3-</sup> + 3,5-Me <sub>2</sub> -py                                                                           | H <sub>2</sub> O               | 25            | 1.4        | 5                | +20.3                          | 275        | $\mu = 0.5 \text{ M (NaClO}_4)$                                                                                |
| 91         | [Fe(CN) <sub>5</sub> (3-CN-py)] <sup>3-</sup> + CN <sup>-</sup> →<br>[Fe(CN) <sub>6</sub> ] <sup>4-</sup> + 3-CN-py                                                                                                    | H <sub>2</sub> O               | 25            | 1.4        | 5                | +20.6                          | 275        | $\mu = 0.5 \text{ M (NaClO}_4)$                                                                                |
| 92         | $[Co(NH_3)_5CI]^{2+} + OH^- \rightarrow$<br>$[Co(NH_3)_5OH]^{2+} + CI^-$                                                                                                                                               | H <sub>2</sub> O               | 35            | 1.5        | 4                | +33.4                          | 268        | Carbonate buffer                                                                                               |
| 93         | $Co^{2+}$ + pada $\rightarrow$ $Co(pada)^{2+}$                                                                                                                                                                         | H₂O                            | 25            | 2.1        | 6                | +7.2                           | 276<br>277 | T-jump,<br>$\mu = 0.1 \text{ M (NaNO}_3), \Delta^3$<br>= +5.8 cm <sup>3</sup> /mol                             |
| 94         |                                                                                                                                                                                                                        | Glycerol                       | 20            | 2.8        | 6                | +9.6                           | 278        | T-jump                                                                                                         |
| 95         |                                                                                                                                                                                                                        | Glycerol                       | 43            | 2.8        | 6                | +7.6                           | 278        | T-jump                                                                                                         |
| 96         | $Co(pada)^{2+} \rightarrow Co^{2+} + pada$                                                                                                                                                                             | Glycerol                       | 43            | 2.8        | 6                | +7.9 m                         | 278        | T-jump                                                                                                         |
| 97         | $Co^{2+} + NH_3 \rightarrow CoNH_3^{2+}$                                                                                                                                                                               | H₂O                            | 10            | 1.4        | 5                | +4.8                           | 276        | T-jump, $\mu = 0.1 \text{ M}$<br>(NH <sub>4</sub> NO <sub>3</sub> ), $\Delta V = -8.6$<br>cm <sup>3</sup> /mol |
| 98         | $Co(gly)^+ \rightarrow Co^{2+} + gly$                                                                                                                                                                                  | H₂O                            | 25            | 2.8        | 6                | +0.3                           | 279        | T-jump, $\mu = 0.2 M$<br>(NaNO <sub>3</sub> )                                                                  |
| 99         | $Co^{2+} + gly \rightarrow Co(gly)^{+}$                                                                                                                                                                                | H <sub>2</sub> O               | 25            | 2.8        | 6 n              | +8                             | 279        | $\Delta V = +7.3 \text{ cm}^3/\text{mol}$                                                                      |
| 00         | CBM° + I <sup>-</sup> → CBM-I                                                                                                                                                                                          | H <sub>2</sub> O               | 25            | 1.4        | 5                | +5.5                           | 280        | T-jump, $\mu = 0.2 \text{ M (KNO}_3$<br>$\Delta V = -5.8 \text{ cm}^3/\text{mol}$                              |
| 101<br>102 | CBM-I $\rightarrow$ CBM + I <sup>-</sup><br>Ni(tren) <sup>2+</sup> + pada $\rightarrow$ Ni(tren)-                                                                                                                      | H₂O<br>H₂O                     | 25<br>20      | 1.4<br>2.7 | 5<br>6           | +11.5<br>+2.9                  | 280<br>281 | T-jump, $\mu = 0.2 \text{ M} (\text{KNO}_3 \text{ T-jump}, \mu = 0.3 \text{ M}$                                |
| 103        | $(pada)^{2+}$<br>Ni(tren)(pada) <sup>2+</sup> $\rightarrow$ Ni(tren) <sup>2+</sup> +                                                                                                                                   | H <sub>2</sub> O               | 20            | 2.7        | 6                | +5.2                           | 281        | (NaNO <sub>3</sub> )<br>T-jump, $\mu = 0.3 \text{ M}$                                                          |
| 104        | pada<br>Ni(gly) <sup>+</sup> → Ni <sup>2+</sup> + gly                                                                                                                                                                  | H₂O                            | 25            | 2.8        | 6                | +8.0                           | 279        | (NaNO <sub>3</sub> )<br>P-jump, $\mu = 0.2 \text{ M}$<br>(NaNO <sub>2</sub> )                                  |
| 105        | $Ni^{2+} + gly \rightarrow Ni(gly)^{+}$                                                                                                                                                                                | H₂O                            | 25            | 2.8        | 6 <i>n</i>       | +10                            | 279        | $(NaNO_3)$ $\Delta V = +2.1 \text{ cm}^3/\text{mol}$                                                           |
| 106        | $Ni(CO)_4 + (EtO)_3P \rightarrow Ni(CO)_3P$ - $(OEt)_3 + CO$                                                                                                                                                           | C <sub>7</sub> H <sub>16</sub> | 0             | 1.4        | 5                | +8                             | 282        | 2                                                                                                              |

| No.        | Reaction                                                                                                                                                                                                                               | Solvent                                                 | T, °C    | P, kbars   | No. of<br>k data | $\Delta  V^*$ , cm $^3$ /mol | Ref        | Remarks                                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|------------|------------------|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| 107        | Ni <sup>2+</sup> + pada → Ni(pada) <sup>2+</sup>                                                                                                                                                                                       | H <sub>2</sub> O                                        | 49       | 2.1        | 6                | +7.7                         | 276<br>277 | T-jump $\mu = 0.1 \text{ M (NaNO_3)}, \Delta V$                                                                 |
| 108        | $Ni^{2+} + NH_3 \rightarrow NiNH_3^{2+}$                                                                                                                                                                                               | H <sub>2</sub> O                                        | 30       | 1.4        | 7                | +6.0                         | 276<br>277 | = $+0.9 \text{ cm}^3/\text{mol}$<br>T-jump<br>$\mu$ = 0.1 M (NH <sub>4</sub> NO <sub>3</sub> ), $\Delta V$      |
| 109        | $Ni^{2+} + mu \rightarrow Ni(mu)^{+}$                                                                                                                                                                                                  | H <sub>2</sub> O                                        | 25       | 1.5        | 4                | +12.2                        | 283        | = $-2.3 \text{ cm}^3/\text{mol}$<br>T-jump, $\mu = 0.1 \text{ M}$<br>(NaClO <sub>4</sub> ), $\Delta V = +22.6$  |
| 110        | $Ni(mu)^+ \rightarrow Ni^{2+} + mu$                                                                                                                                                                                                    | H <sub>2</sub> O                                        | 25       | 1.5        | 4                | -10.4                        | 283        | cm <sup>3</sup> /mol<br>T-jump, $\mu = 0.1 \text{ M}$                                                           |
| 111        | Ni(edda) + pada → Ni(edda)(pada)                                                                                                                                                                                                       | H <sub>2</sub> O                                        | 25       | 2.7        | 6                | +5.2                         | 281        | (NaClO <sub>4</sub> )<br>T-jump, $\mu$ = 0.3 M<br>(NaNO <sub>3</sub> )                                          |
| 112        | Ni(nta) <sup>-</sup> + pada → Ni(nta)(pada) <sup>-</sup>                                                                                                                                                                               | H <sub>2</sub> O                                        | 25       | 2.7        | 6                | +6.9                         | 281        | T-jump, $\mu = 0.3 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 113        | $Ni(nta)(pada)^- \rightarrow Ni(nta)^- + pada$                                                                                                                                                                                         | H <sub>2</sub> O                                        | 25       | 2.7        | 6                | +7.0                         | 281        | T-jump, $\mu = 0.3 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 114        | Ni(dien) <sup>2+</sup> + pada → Ni(dien)-<br>(pada) <sup>2+</sup>                                                                                                                                                                      | H <sub>2</sub> O                                        | 25       | 2.7        | 6                | +4.2                         | 281        | T-jump, $\mu = 0.3 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 115        | Ni(dien)(pada) <sup>2+</sup> → Ni(dien) <sup>2+</sup> + pada                                                                                                                                                                           | H₂O                                                     | 25       | 2.7        | 6                | +3.6                         | 281        | T-jump, $\mu = 0.3 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 116        | Ni(trien) <sup>2+</sup> + pada → Ni(trien)-<br>(pada) <sup>2+</sup><br>Ni(trien)(pada) <sup>2+</sup> → Ni(trien) <sup>2+</sup> +                                                                                                       | H <sub>2</sub> O                                        | 25       | 2.7<br>2.7 | 6                | +2.6<br>+5.9                 | 281        | T-jump, $\mu = 0.3 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 117<br>118 | pada $Zn(g y)^{+} \rightarrow Zn^{2+} + g y$                                                                                                                                                                                           | H <sub>2</sub> O<br>H <sub>2</sub> O                    | 25<br>10 | 2.7        | 6<br>6           | +2.0                         | 281<br>279 | T-jump, $\mu$ = 0.3 M<br>(NaNO <sub>3</sub> )<br>T-jump, $\mu$ = 0.2 M                                          |
| 119        | $Zn^{2+} + gly \rightarrow Zn(gly)^{+}$                                                                                                                                                                                                | H <sub>2</sub> O                                        | 10       | 2.8        | 6 <i>n</i>       | +7                           | 279        | (NaNO <sub>3</sub> )<br>$\Delta V = +5.2 \text{ cm}^3/\text{mol}$                                               |
| 120        | $Zn^{2+}$ + pada $\rightarrow$ $Zn(pada)^{2+}$                                                                                                                                                                                         | Glycerol                                                | 20       | 2.8        | 6                | +12.2                        | 278        | T-jump                                                                                                          |
| 121        | $Zn(pada)^{2+} \rightarrow 2n^{2+} + pada$                                                                                                                                                                                             | Glycerol                                                | 20       | 2.8        | 6                | +13.1"                       | 278        | T-jump                                                                                                          |
| 122        | $Cu(gly)^+ \rightarrow Cu^{2+} + gly$                                                                                                                                                                                                  | H <sub>2</sub> O                                        | 25       | 2.8        | 6                | -1.7                         | 279        | T-jump, $\mu = 0.2 \text{ M}$<br>(NaNO <sub>3</sub> )                                                           |
| 123        | $Cu^{2+} + gly \rightarrow Cu(gly)^{+}$                                                                                                                                                                                                | H <sub>2</sub> O                                        | 25       | 2.8        | 6 <i>n</i>       | +12                          | 279        | $\Delta V = +13.4 \text{ cm}^3/\text{mol}$                                                                      |
| 124        | $Mo(CO)_6 + Ph_3P \rightarrow Mo(CO)_5PPh_3 + CO$                                                                                                                                                                                      | Me <sub>2</sub> CHCH <sub>2</sub> -<br>CMe <sub>3</sub> | 103      | 1.4        | 5                | +10                          | 282        |                                                                                                                 |
| 125        | $Cr(CO)_6 + Ph_3P \rightarrow Cr(CO)_5PPh_3 + CO$                                                                                                                                                                                      | c-C <sub>6</sub> H <sub>12</sub>                        | 124      | 1.4        | 5                | +15                          | 282        |                                                                                                                 |
| 126        | $W(CO)_6 + Bu_3P \rightarrow W(CO)_5PBu_3 + CO$                                                                                                                                                                                        | c-C <sub>6</sub> H <sub>12</sub>                        | 120      | 1.4        | 5                | -10                          | 282        |                                                                                                                 |
| 127        | $Cr(CO)_6 + N_3^- \rightarrow Cr(CO)_5NCO^- + N_2$                                                                                                                                                                                     | Me <sub>2</sub> CO                                      | 24       | 1.4        | 5                | 0<br>14.3                    | 282        |                                                                                                                 |
| 128<br>129 | Pd(Et <sub>4</sub> dien)Cl <sup>+</sup> + N <sub>3</sub> <sup>-</sup> $\rightarrow$<br>Pd(Et <sub>4</sub> dien)N <sub>3</sub> <sup>+</sup> + Cl <sup>-</sup><br>Pd(Et <sub>4</sub> dien)Cl <sup>+</sup> + l <sup>-</sup> $\rightarrow$ | H <sub>2</sub> O<br>H <sub>2</sub> O                    | 25<br>25 |            |                  | - 14.3<br>- 13.8             | 284        | p                                                                                                               |
| 130        | Pd(Et₄dien)I <sup>+</sup> + CI <sup>-</sup><br>Pd(Et₄dien)Br <sup>+</sup> + N₃ <sup>-</sup> →                                                                                                                                          | H <sub>2</sub> O                                        | 25       |            |                  | -11.4                        | 284        | p<br>p                                                                                                          |
| 131        | Pd(Et <sub>4</sub> dien)N <sub>3</sub> <sup>+</sup> + Br <sup>-</sup><br>Pd(Et <sub>4</sub> dien)Br <sup>+</sup> + I <sup>-</sup> $\rightarrow$                                                                                        | H₂O                                                     | 25       |            |                  | -12.5                        | 284        | p                                                                                                               |
| 132        | Pd(Et <sub>4</sub> dien)I <sup>+</sup> + Br <sup>-</sup><br>Pd(Et <sub>4</sub> dien)I <sup>+</sup> + N <sub>3</sub> <sup>-</sup> $\rightarrow$                                                                                         | H <sub>2</sub> O                                        | 25       |            |                  | -10.8                        | 284        | p                                                                                                               |
|            | Pd(Et₄dien)N <sub>3</sub> + + I <sup>-</sup>                                                                                                                                                                                           |                                                         |          |            |                  |                              |            |                                                                                                                 |
| 133        | $Pd(Et_4dien)I^+ + Br^- \rightarrow$                                                                                                                                                                                                   | H <sub>2</sub> O                                        | 25       |            |                  | <del>-</del> 10.6            | 284        | p                                                                                                               |
| 134        | Pd(Et₄dien)Br <sup>+</sup> + I <sup>-</sup>                                                                                                                                                                                            | H₂O                                                     | 40       |            |                  | -10.2                        | 284        | p                                                                                                               |
| 135        |                                                                                                                                                                                                                                        | DMSO                                                    | 40       |            |                  | -9.2                         | 284        | P                                                                                                               |
| 136        |                                                                                                                                                                                                                                        | DMF                                                     | 40       |            |                  | -7.9                         | 284        | P                                                                                                               |
| 137        |                                                                                                                                                                                                                                        | MeOH                                                    | 40       |            |                  | <del></del> 11.7             | 284        | p                                                                                                               |
| 138        | $PtCl42- + H2O \rightarrow PtCl3(OH2)- + Cl-$                                                                                                                                                                                          | H₂O                                                     | 25       | 1.2        | 8                | -17                          | 266        |                                                                                                                 |
| 139        | $Pt(NH_3)CI_3^- + H_2O \rightarrow$ $Pt(NH_3)CI_2(OH_2) + CI^-$ $Pt(dlog)Pt + h = h + CI^-$ $Pt(dlog)Pt + h = h + CI^-$                                                                                                                | H <sub>2</sub> O                                        | 26<br>25 | 1.1        | 9                | -14<br>-15 <sup>t</sup>      | 266        | $\Delta V = -1.2 \text{ cm}^3/\text{mol},$                                                                      |
| 141        | $Pt(dlen)Br^{+} + N_{3}^{-} \rightarrow Pt(dlen)N_{3}^{+} + Br^{-}$                                                                                                                                                                    | H <sub>2</sub> O<br>H <sub>2</sub> O                    | 25       | 1.5        | 6                | -8.5 <sup>q</sup>            | 269<br>269 | $\mu = 0.2 \text{ M (NaClO4)}$ $\mu = 0.2 \text{ M (NaClO4)}$ $\mu = 0.2 \text{ M (NaClO4)}$                    |
| 142        | Pt(dien)Br <sup>+</sup> + py → Pt(dien)py <sup>2+</sup> + Br <sup>-</sup>                                                                                                                                                              | H <sub>2</sub> O                                        | 25<br>25 | 1.5        | 6                | <0 <i>¹</i>                  | 269        | $\mu = 0.2 \text{ M (NaClO4)}$<br>$\Delta V = +23.5 \text{ cm}^3/\text{mol},$<br>$\mu = 0.2 \text{ M (NaClO4)}$ |
| 143        | ** * *** *** *** *** *** *** *** *** *                                                                                                                                                                                                 | H <sub>2</sub> O                                        | 25       | 1.5        | 6                | -7.79                        | 269        | $\mu = 0.2 \mathrm{M} (\mathrm{NaClO_4})$                                                                       |
| 144        | Pt(dien)Br <sup>+</sup> + OH <sup>-</sup> → Pt(dien)OH <sup>+</sup> + Br <sup>-</sup>                                                                                                                                                  | H <sub>2</sub> O                                        | 25       | 1.5        | 8                | -18.0 t                      | 269        | $[OH^{-}] = 0.01 \text{ M}, \mu = 0.2 \text{ M} (NaClO4)$                                                       |
| 145        | $Pt(dien)Br^{+} + NO_{2}^{-} \rightarrow Pt(dien)NO_{2}^{+} + Br^{-}$                                                                                                                                                                  | H <sub>2</sub> O                                        | 25       | 1.5        | 6                | -18 <sup>t</sup>             | 269        | $\Delta V = +0.9 \text{ cm}^3/\text{mol},$<br>$\mu = 0.2 \text{ M (NaClO}_4)$                                   |
|            |                                                                                                                                                                                                                                        | H <sub>2</sub> O                                        | 25       | 1.5        | 6                | -6.4 <sup>q</sup>            | 269        | $\mu = 0.2 \mathrm{M} (\mathrm{NaClO_4})$                                                                       |
| 146<br>147 | Pt(dien)Cl <sup>+</sup> + N <sub>3</sub> <sup>-</sup> →                                                                                                                                                                                | H <sub>2</sub> O                                        | 25       | 1.5        | 6                | — 17 <sup>t</sup>            | 269        | $\Delta V = -2.7 \text{ cm}^3/\text{mol},$                                                                      |

TABLE IV (Continued)

| No. | Reaction                                                                                                                                        | Solvent            | <i>T,</i> °C | P, kbars | No. of<br>k data | $\Delta V^*$ , cm $^3$ /mol | Ref | Remarks                                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------|------------------|-----------------------------|-----|--------------------------------------------------------------------------------|
|     | Neaction                                                                                                                                        |                    |              |          |                  |                             |     |                                                                                |
| 148 |                                                                                                                                                 | H <sub>2</sub> O   | 25           | 1.5      | 6                | -8.2 <sup>q</sup>           | 269 | $\mu = 0.2 \mathrm{M} (\mathrm{NaClO_4})$                                      |
| 149 | Pt(dien)I <sup>+</sup> + N <sub>3</sub> <sup>-</sup> $\rightarrow$<br>Pt(dien)N <sub>3</sub> <sup>+</sup> + I <sup>-</sup>                      | H <sub>2</sub> O   | 25           | 1.5      | 6                | -18 <sup>t</sup>            | 269 | $\Delta V = +0.8 \text{ cm}^3/\text{mol},$<br>$\mu = 0.2 \text{ M (NaClO}_4)$  |
| 150 |                                                                                                                                                 | H₂O                | 25           | 1.5      | 6                | $-8.2^{q}$                  | 269 | $\mu = 0.2 \mathrm{M} (\mathrm{NaClO_4})$                                      |
| 151 | Pt(dien)N <sub>3</sub> <sup>+</sup> + I <sup>-</sup> $\rightarrow$<br>Pt(dien)I <sup>+</sup> + N <sub>3</sub> <sup>-</sup>                      | H <sub>2</sub> O   | 25           | 1.5      | 6                | <0 '                        | 269 | $\Delta V = -0.8 \text{ cm}^3/\text{mol},$<br>$\mu = 0.2 \text{ M (NaClO}_4)$  |
| 152 |                                                                                                                                                 | H <sub>2</sub> O   | 25           | 1.5      | 6                | -12.2ª                      | 269 | $\mu = 0.2 \mathrm{M} (\mathrm{NaClO_4})$                                      |
| 153 | Pt(dien)N <sub>3</sub> <sup>+</sup> + NCS <sup>-</sup> $\rightarrow$ Pt(dien)NCS <sup>+</sup> + N <sub>3</sub> <sup>-</sup>                     | H <sub>2</sub> O   | 25           | 1.5      | 6                | <0 '                        | 269 | $\Delta V = +11.8 \text{ cm}^3/\text{mol},$<br>$\mu = 0.2 \text{ M (NaClO}_4)$ |
| 154 |                                                                                                                                                 | H <sub>2</sub> O   | 25           | 1.5      | 6                | -7.3 <sup>q</sup>           | 269 | $\mu = 0.2  \text{M}  (\text{NaClO}_4)$                                        |
| 155 | trans-Pt(PEt <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub> + Br <sup>-</sup> →<br>trans-Pt(PEt <sub>3</sub> ) <sub>2</sub> ClBr + Cl <sup>-</sup> | MeOH               | 25           | 1        | 4                | -27 <i>′</i>                | 285 | $[Bu_4NBr] = 0.1 M$                                                            |
| 156 |                                                                                                                                                 | Aq<br>MeOH         | 25           | 0.5      | 4                | -28 t                       | 285 | $H_2O \text{ mol } \%$ , $\mu = 0.1 \text{ M}$ (LiClO <sub>4</sub> )           |
| 157 |                                                                                                                                                 | Aq<br>MeOH         | 25           | 0.5      | 4                | -28 <sup>q</sup>            | 285 | $H_2O$ 60 mol %, $\mu = 0.1$<br>M (LiClO <sub>4</sub> )                        |
| 158 | $trans$ -IrCI(CO)(PPh <sub>3</sub> ) <sub>2</sub> + MeI $\rightarrow$ IrCII(CO)(PPh <sub>3</sub> ) <sub>2</sub> Me                              | PhMe               | 25           | 1        | 5                | -28.2                       | 286 |                                                                                |
| 159 |                                                                                                                                                 | PhH                | 25           | 0.8      | 4                | -29.8                       | 286 |                                                                                |
| 160 |                                                                                                                                                 | CHCI <sub>3</sub>  | 25           | 1        | 5                | -19.2                       | 286 |                                                                                |
| 161 |                                                                                                                                                 | PhCI               | 25           | 1        | 6                | -23.6                       | 286 |                                                                                |
| 162 |                                                                                                                                                 | Me <sub>2</sub> CO | 25           | 1        | 5                | -20.5                       | 286 |                                                                                |
| 163 |                                                                                                                                                 | DMF                | 25           | 1        | 4                | -15.2                       | 286 |                                                                                |
| 164 | trans-IrCl(CO)(PPh <sub>3</sub> ) <sub>2</sub> + H <sub>2</sub> $\rightarrow$ IrClH <sub>2</sub> (CO)(PPh <sub>3</sub> ) <sub>2</sub>           | DMF                | 10           | 1.5      | 6                | <b>—18.0</b>                | 287 |                                                                                |
| 165 | - · · · · · · · · · · · · · · · · · · ·                                                                                                         | PhCI               | 10           | 1.5      | 6                | <b>-19.0</b>                | 287 |                                                                                |
| 166 |                                                                                                                                                 | PhMe               | 10           | 1.5      | 6                | -20.4                       | 287 |                                                                                |
| 167 | Me <sub>2</sub> Hg + HCl → MeHgCl + CH <sub>4</sub>                                                                                             | H <sub>2</sub> O   | 25.0         | 1.0      | 4                | -22.0                       | 288 | $[HCI] = 0.01 \sim 0.10 M$                                                     |
| 168 | Me₂Hg + HBr → MeHgBr + CH₄                                                                                                                      | H <sub>2</sub> O   | 25.0         | 1.0      | 4                | -37                         | 288 | $[HBr] = 0.01 \sim 0.17 M$                                                     |
| 169 | $Ce(DCTA)^{-} + Er^{3+} \rightarrow Ce^{3+} + Er(DCTA)^{-}$                                                                                     | H <sub>2</sub> O   | 25.0         | 1.5      | 6                | -3.2                        | 289 | pH $\simeq$ 5.3, $\mu$ = 0.1 M (KCI                                            |
| 170 | Eu(DCTA) <sup>-</sup> + Er <sup>3+</sup> → Eu <sup>3+</sup> + Er(DCTA) <sup>-</sup>                                                             | H <sub>2</sub> O   | 25.0         | 1.5      | 6                | -2.2                        | 289 | pH $\simeq$ 3.9, $\mu$ = 0.1 M (KCI                                            |
| 171 | Tb(EDTA) $^-$ + Er $^{3+} \rightarrow$ Tb $^{3+}$ + Er(DCTA) $^-$                                                                               | H <sub>2</sub> O   | 25.0         | 1.5      | 6                | <b>-4</b> .7                | 289 | pH $\simeq$ 3.6, $\mu$ = 0.1 M (KCI                                            |
| 172 | $HNF_2 \xrightarrow{OH^-} N_2F_2 + F^- + H_2O$                                                                                                  | Aq<br>MeOH         | 15           | 4.1      | 5                | +7 s                        | 290 | H <sub>2</sub> O 93%, phosphate buffer, pH 7.42                                |
| 173 | $HNF_2 + OAc^- \rightarrow F^- + other$                                                                                                         | H <sub>2</sub> O   | 20           | 3.2      | 4                | <b>-</b> 17.6               | 290 | Acetate buffer, pH 5.5                                                         |

N(CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>)<sub>3</sub>; gly, H<sub>2</sub>NCH<sub>2</sub>COO<sup>-</sup>; edda, <sup>-</sup>OCONHCH<sub>2</sub>CH<sub>2</sub>NHCOO<sup>-</sup>; nta, N(CH<sub>2</sub>COO<sup>-</sup>)<sub>3</sub>;

<sup>b</sup> Corrected for pH change by pressure. <sup>c</sup> Acid-independent path. <sup>d</sup> Inversely acid-dependent path. <sup>e</sup> From data published by T. G. Spiro, A. Revesz, and J. Lee, J. Am. Chem. Soc., 90, 4000 (1968). Catalyzed by Pb<sup>2+</sup> (4 × 10<sup>-4</sup> M) and sodium polyethylenesulfonate (10<sup>-3</sup> M). For k in the following scheme, obtained from the overall rates at various oxalic acid concentrations:

$$\begin{array}{l} \textit{\textit{cis-}Co(en)}_2(OH_2)_2{}^{3+} + \left\{ \begin{matrix} H_2C_2O_4 \rightleftarrows Co(en)_2(OH_2)_2{}^{3+} \cdot H_2C_2O_4 \\ \hat{\downarrow} & \updownarrow \\ HC_2O_4^- \rightleftarrows Co(en)_2(OH_2)_2{}^{3+} \cdot HC_2O_4^- \end{matrix} \right\} \stackrel{\textit{\textit{k}}}{\longrightarrow} Co(en)_2(OH_2)C_2O_4^+ \stackrel{\text{\textit{fast}}}{\longrightarrow} Co(en)_2C_2O_4^+ \\ \end{matrix}$$

<sup>h</sup> For k' in the following scheme, obtained from the overall rates at various oxalate concentrations:

$$\text{Co(en)}_2(\text{OH)OH}_2{}^{2+} + \text{C}_2\text{O}_4{}^{2-} \\ \rightleftharpoons \text{Co(en)}_2(\text{OH)OH}_2{}^{2+} \cdot \text{C}_2\text{O}_4{}^{2-} \\ \hline \qquad \text{Co(en)}_2(\text{OH)OH}_2{}^{2+} \cdot \text{C}_2\text{O}_4{}^{2-} \\ \hline \qquad \text{Co(en)}_2(\text{OH)OH}_2{}^{2+} \cdot \text{Co(en)}_2(\text{OH)OH}_2{}^{2-} \\ \hline \qquad \text{Co$$

 $^{\prime}$  For  ${\it K'}^{\prime}$  in the following scheme. The volume change for the preequilibrium is assumed to be  $\pm 2.3~{\rm cm}^3/{\rm mol}$ .

$$Co(en)_2(OH)C_2O_4 + H^+ \Rightarrow Co(en)_2(OH_2)C_2O_4^+$$
  $Co(en)_2(OH_2)C_2O_4^+ \xrightarrow{k''} Co(en)_2C_2O_4^+ + H_2O_4^+$ 

/  $\Delta V$  is estimated to be  $\pm$  17.5 cm<sup>3</sup>/mol from the pressure effect on the equilibrium ([HClO<sub>4</sub>] = 0.2 M], and  $\pm$ 8 cm<sup>3</sup>/mol from dilatometric measurements [HNO<sub>3</sub>] = 0.7 M). \* The observed activation volume consists of two terms,  $\Delta V_{\text{OH}} + \Delta V^*_{-2}$ : FeCl<sup>2+</sup>  $\rightarrow$  FeOHCl<sup>+</sup> + H<sup>+</sup> ( $K_{\text{OHCl}}$ ), FeOH<sup>2+</sup> + Cl<sup>-</sup>  $\rightarrow$  FeOHCl<sup>+</sup> + Cl<sup>-</sup>  $\rightarrow$  FeOHCl<sup>+</sup> + Cl<sup>-</sup>  $\rightarrow$  FeOHCl<sup>+</sup> + Cl<sup>-</sup>  $\rightarrow$  FeOHCl<sup>+</sup> + Cl<sup>-</sup> ( $K_{\text{OHCl}}$ ). \* Calculated by the present authors assuming ln k = a + bP. <sup>n</sup> Calculated from the equilibrium constant and the reverse reaction rate. <sup>o</sup> Cobalamin. <sup>p</sup> No k<sub>2</sub> path is observed. <sup>q</sup> Nucleophile dependent path: rate =  $k_1$ [complex] +  $k_2$ [nucleophile][complex]. No  $k_1$  path is observed. After correction for pH change by pressure. Nucleophile independent path.

#### B. Isomerizations (Entries 1–23)

Schmulbach<sup>239</sup> was the first chemist to study inorganic racemizations under pressure. He found only very small effects in the case of tris(oxalato)cobalt(III), and concluded that no bond making or breaking was involved. A concerted distortion from octahedral coordination to a trigonal prism was postulated, and this conclusion is surely correct. This mechanism (twist about a single atom) is not known in organic chemistry. Conversion of a tetrahedral nickel complex into the planar isomer has been achieved by Ferraro by means of high pressure;245 a twist mechanism was postulated.

The racemization of compounds in which an asymmetric carbon atom is the source of the chirality always requires prior dissociation to a trivalent species. This mechanism also operates in many inorganic compounds, and it makes itself known by way of much larger activation volumes. Both negative and positive activation volumes are possible. Thus, Stranks argues that racemization of tris- and bis(oxalato)chromium(III) complexes takes place by a dissociative mechanism in which the volume decrease is produced by an increase in electrostriction, 241 and so does cis-trans isomerization according to Kelm, 243 but when the ligands are all neutral, as in the bisaquobis(ethylenediamine)cobalt(III) ion,  $\Delta \textit{V}^{\mp}$  is large and positive. These large values suggest that the radius of the complex ion does not change much as one of the ligands is ejected. Conversely, the large negative numbers could be indicative of prior expansion of the first coordination sphere to seven with the entry of a water molecule. but it is not easy to see why such a species would racemize much more easily than the initial state. On the other hand, the reduction in  $\Delta V^{\ddagger}$  in the calcium nitrate or perchloric acid catalyzed isomerizations is readily understandable in terms of prior association of the oxalate ligand with another cation.

#### C. Redox Reactions (Entries 24–29)

In the oxidation of one complex ion by another, the question arises whether one of the ligands must first be removed (innersphere mechanism) or not (outer sphere). Halpern was the first chemist to approach this question by means of high-pressure arguments:  $\Delta V^{\ddagger}$  should be positive if the former mechanism applies, and he found that this is indeed so in a number of known inner-sphere reductions of halo- and azidocobalt(III) complexes by aquoiron(II). One somewhat surprising feature of both the detailed and preliminary results recorded by Halpern is that they showed only little or no correlation with total charge: some formal (+4) transition states are formed with volume decreases smaller than some (+1) analogs. Nevertheless, the argument has now been strengthened significantly by the finding that known outer-sphere redox reactions—in which the expected increase in electrostriction is not complicated by prior dissociation of a ligand—have fairly large negative activation volumes: among them are the electron exchange between thallous and thallic ions, between tris(ethylenediamine)cobalt(II) and -(III) complexes, and hexaaquoiron(II) and -(III); in the latter case both mechanisms compete, and there is a clear difference in  $\Delta V^{\mp}$ between both

#### D. Solvent Exchange (Entries 30-40)

These are surely the simplest substitution reactions of complex ions since the reaction volume is zero and the two solvent molecules involved in the exchange are equally bound (or free). As in the earlier groups of reactions, the important question is between prior association (expansion of the coordination sphere) and dissociation, with the corresponding activation volumes negative and positive, respectively.

The tantalum pentabromide adducts studied by Merbach<sup>248</sup> provide a striking example: dimethyl ether exchange, which is a known example of dissociative exchange, has an activation

volume of  $\pm 30 \text{ cm}^3/\text{mol}$ , whereas dimethyl sulfide exchange, known to be of the associative type, has a  $\Delta V^{\dagger}$  of -12.6 cm<sup>3</sup>/mol. The dimethyl sulfoxide adducts of cobalt(III) (+10 cm<sup>3</sup>/mol) and chromium(III) (-11 cm<sup>3</sup>/mol) are other such pairs. This difference carries over into other solvents as well; as in the isomerization reactions, one observes positive activation volumes with cobalt, negative ones with chromium. Iridium and rhodium resemble chromium in this respect.

### E. Other Substitution Reactions (Entries 41–173)

When the leaving groups and nucleophiles are not the same but both are neutral molecules, the simple distinction between associative and dissociative mechanisms on the basis of the sign of the activation volume still holds, but when either or both are ions, the results are made more complex by changes in electrostriction.

The pentaamminecobalt(III) complexes are subject to hydrolysis which is accelerated by pressure, yet, in these reactions a dissociative mechanism has been assigned by Swaddle et al. 256 The reason for the volume decrease is the same as that advanced to explain the pressure-induced acceleration in organic reactions: there is an increase in total charges, and the corresponding electrostriction is what is observed. The sequence of accelerations NCS  $^-$  < NO $_3^-$  < Br  $^-$  < CI  $^ \ll$  SO $_4^{2-}$  is in good agreement with this assignment, as is the fact that  $\Delta V^{\ddagger} \approx \Delta V$ . Association, and entrance of water in the coordination sphere of cobalt, would also have produced an increase in rate, but these increases should not have been a sensitive function of the leaving group. The slight pressure retardation if lead ion and polyethylenesulfonate polymer are present is a somewhat special case that is not closely related to the reactions in water; 258 the azide reaction with its positive activation volume suggests that the azido ligand leaves as HN<sub>3</sub> rather than as N<sub>3</sub><sup>-</sup>. The trans-dichlorocobalt(III) complex hydrolyzes with a positive activation volume. Before it can be concluded that this is a unique case of a pressure-retarded ionization process, further information is needed, however. Thus, the activation volume was derived from first-order rate constants, but it was also reported that these are pH dependent; yet, apparently no corrections were made for the change in pH with pressure. The pentaaquochromium(III) complexes are described by prior association with water, in analogy to the mechanism of water exchange. 262

The very large, positive value of the hexathiocyanatochromium(III) complex is due to dissociation, and the delocalization and loss of electrostriction that is expected of a reaction of the type  $3\theta \rightarrow 2\theta + \theta$ . The bisammine analog has a small, negative value; the authors<sup>263</sup> ascribe this to a frontside displacement. The interpretation of the pressure effect on the hydrolysis rate of iron(III) complexes is straightforward. 264 The platinum complexes show unexpectedly great acceleration in the liberation of chloride, which Brower<sup>266</sup> attributes to association of two water molecules.

Tantalizingly large fluctuations occur in the brief list of reactions involving hydroxide ion. These variations bear little relation to the formal charge type of the reactions. Thus, the reaction with hexaaquochromium(III) has a negative activation volume even though neutralization formally occurs, whereas the phosphatocobalt(III) complex is greatly retarded, even though formally there is a great increase in total charges. As noted by Swaddle,267 the complex ions should probably not be thought of as point charges. The phosphate complex, for example, is surely not a neutral species but rather a zwitterion with three negatively charged oxygen atoms at one end and pentaamminecobalt(III) at the other. The very large value for chloropentaamminecobalt(III) has been attributed to proton abstraction from the coordinated ammonia by Kitamura.268

The reactions involving oxalate ions are difficult to interpret because of the uncertain state of protonation of both reagents.

Dissociation is clearly the rule with the nickel through copper complexes. One trend that seems fairly obvious is that the heavier metals have evidently a greater ability to accommodate expansion of the coordination spehre as might be expected; examples are the more negative  $\Delta \, \textit{V}^{\ddagger}$  values in the series Cr-Mo-W, the platinum displacements compared to palladium, and the large, negative values characteristic in the iridium

There are very few examples of inorganic reactions under pressure that do not involve complex ions. One of these is the hydrolysis of difluoramine, which offers an interesting contrast with the reaction of the same compound with acetate ion. The former reaction is retarded by pressure, and this was claimed<sup>290</sup> to be so because of HN-F anion dissociation into fluoride and fluoronitrene, NF; the latter reaction was thought to be a simple displacement. These assignments are in agreement with the fact that the reaction with hydroxide is enormously faster than that with acetate. It proved possible to capture the supposed intermediate,  $^{291}$  and subsequent work with  $\mathrm{HNCl_2}$  led to the formation of an N-Cl adduct as well.292 It should also be mentioned here that Hagen has reported<sup>293</sup> much valuable information regarding the use of high pressure in inorganic synthesis; the simplicity of his apparatus renders his approach as the most attractive route to many of the compounds he describes. Finally, attention should also be called to work by Adams and Laidler, 294 who have deduced activation volumes of diffusion of tertiary ammonium salts in acetone (approximately +10 cm<sup>3</sup>/mol) from conductance data under pressure; the data are shown to be in reasonable agreement with hole-free volume theory of liquids.

#### V. Reaction Volumes

#### A. The Data in Tabular Form (Table V)

It should be noted here that a number of reaction volumes are given under Remarks in the preceding tables; some but not all of these data are repeated in Table V.

# **B.** Inorganic Acids: Ionization Volumes (Entries 1-46)

The ionization volume of water shows the temperature and ionic strength dependence that would be anticipated on the basis of an assumption that water has a relatively open (ice-like) structure near 0 °C which is in equilibrium with a denser structure at higher temperatures. The less dense structure should be subject to greater electrostriction. A minimum in the ionization volume is observable at about 32 °C, reminiscent of and perhaps related to the temperature of maximum density of water.  $\Delta V_i$ is reduced by a few cm<sup>3</sup>/mol if the ionic strength is 0.1; the ions to be solvated then have to compete with the electrolyte.

The large, negative ionization volume of boric acid is due in part to the fact that it is not merely a dissociation, but a water molecule becomes bound in the process. The temperature and ionic strength dependence are similar to those observed in the ionic dissociation of water itself. The same remarks apply to carbonic acid except that the temperature range is wider:  $\Delta V_{\rm i}$ equals -88 cm<sup>3</sup>/mol at 250 °C. No water becomes bound in the ionization of cacodylic acid, and its ionization volume is more modest.

Diphosphate ion has a larger  $\Delta V_i$  again (-25 cm<sup>3</sup>/mol at 25 °C), but now for a different reason: a dianion is formed, and according to the Drude-Nernst picture, electrostriction is proportional to the square of the charge. The very modest volume decreases characteristic of the acid ionizations of hexaaquochromium and -iron(III) may have the same origin. They are essentially proton transfers from one hydronium ion to another, and there is net charge dispersal in the process.

## C. Carboxylic Acids: Ionization Volumes (Entries 47 - 124)

The ionization volume of carboxylic acids is in general about - 14 cm<sup>3</sup>/mol, but for the first few two members of the series these volume decreases are significantly smaller. -8 and -11 cm<sup>3</sup>/mol, respectively. The same anomaly is visible with oxalic and malonic acid, and with glycolic acid. The nature of these deviations is not known at present; any theory to account for it should explain why the effect of small alkyl groups on the ionization volume does not apply to amines. The explanation need not concern the anion alone, of course; it should always be remembered that when abnormal volume differences are encountered, the abnormality is not necessarily due to the species to the right of the arrow sign. 309 If the small, free acid molecules have abnormally small partial volume, due, for example, to hydration to ortho acids, to dimerization, or to hydrogen bonding, the effects would be explained. That these attributes would indeed reduce the volume of the intial species may be gleaned from Table VI; pure oxalic, in fact, is known in the form of a dihydrate.

The Drude-Nernst formulation predicts that with dicarboxylic acids  $\Delta V_2$  should be larger than  $\Delta V_1$ , and that this difference should diminish as the distance between the two centers is raised. The data nicely bear this out, with  $\Delta \Delta V_i = 6-8$  cm<sup>3</sup>/mol at the lower members in the series, and then dropping off until it has vanished at adipic acid.

No outstandingly unusual features are encountered with the hydroxy acids. Glycinium ion is still subject to contraction when it transfers a proton to water, because even though it becomes formally neutral, it is in fact a zwitterion with two charges interacting with at least the nearest-neighbor water molecules. The o-hydroxybenzoic acid<sup>307</sup> is a bit surprising with a  $\Delta V_i$  of -4.6 cm<sup>3</sup>/mol (for benzoic acid, -10.9 cm<sup>3</sup>/mol); the internal H bond might be considered responsible, but an analogous effect is not discernible with the aliphatic hydroxyacids. Perhaps the rigidly enforced nature of the H bond in the phenolic benzoate ion is the origin of this effect.

## D. Phenols (Entries 125-159)

Once again the Drude-Nernst equation is helpful in categorizing the data. First of all,  $\Delta V_i$  of phenol itself is more negative than that of carboxylic acids because, although charge delocalization occurs, it is less complete; for the same reason, it is less negative than water itself. Secondly, the volume diminution is less pronounced for thiophenol, for which the negative charge is located on a larger atom. Thirdly, the possibilities of an electron-withdrawing group either attracting negative charge to itself by virtue of resonance, or to neighboring carbon atoms in an inductive way, both serve to reduce  $\Delta V_i$ . With some minor exceptions, one finds that the more such groups are present, the more pronounced the effect is. An increase is, on the other hand, observed when a neighboring carboxylate center serves to increase charge concentration. We note parenthetically that this review includes some data also listed in Hamann's survey2 which were then referred to as unpublished work; the full publication has meanwhile appeared.311

#### E. Amines (Entries 160-222)

The data given are those of the conjugate acids; to get the data for the ionization process

$$NR_3 + H_2O \rightarrow HNR_3^+ + OH^-$$

the  $\Delta V$  data given should be subtracted from  $\Delta V_i$  for water (i.e., from -22 cm3/mol at 25 °C).

The data show a small but discernible trend: more highly substituted ammonium ions deprotonate with smaller volume

| th.  |
|------|
| ä    |
| ¥    |
| =    |
| =    |
| 3    |
| =    |
|      |
| >    |
|      |
| _    |
| ᄌ    |
| .≃   |
| -    |
| u    |
| ě    |
| - 27 |
| w    |
| Œ    |
| _    |
| ٠.   |
| >    |
| -    |
| ш    |
| _    |
| _    |
| œ    |
| =    |
| -    |
| _    |
|      |

|      |                                                | Remarks  |                       |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        |                                              |                  |                  | '25 m             |       |       |                  |            | 25 m              |      | 0.05 M borate buffer, cresol | ŏ             | e buffer, p-             | d indicator           |                  | H <sub>2</sub> CO <sub>3</sub> : total carbon dioxide              |                  |                  |                  |                  |                  | 0.05 M cacodylate buffer,<br>2,5-dinitrophenol indicator                                 |
|------|------------------------------------------------|----------|-----------------------|------------------------|------------------|------------------------|------------------|-----------------------|-----------|-----------------------|-----------------------|------------------------|------------------|-----------------------|------------------|------------------------|------------------|------------------------|------------------|------------------------|------------------|------------------------|------------------|------------------------|----------------------------------------------|------------------|------------------|-------------------|-------|-------|------------------|------------|-------------------|------|------------------------------|---------------|--------------------------|-----------------------|------------------|--------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------------------------------------------------------------------------------|
|      |                                                | Re       |                       | $\mu = 0.1 \mathrm{m}$ |                  | $\mu = 0.1 \mathrm{m}$ |                  | $\mu = 0.1  \text{m}$ |           | $\mu = 0.1  \text{m}$ |                       | $\mu = 0.1 \mathrm{m}$ |                  | $\mu = 0.1  \text{m}$ |                  | $\mu = 0.1 \mathrm{m}$ |                                              |                  | At 0.725 m       | [NaCI] = 0.7      |       |       |                  | At 0.725 m | [NaCI] = 0.725  m |      | 0.05 M borate                | red indicator | 0.05 M borate buffer, p- | nitrophenol indicator |                  | H <sub>2</sub> CO <sub>3</sub> : total                             |                  |                  |                  |                  |                  | 0.05 M cacoc<br>2,5-dinitro                                                              |
|      |                                                | Ref      | 295                   | 295                    | 295              | 295                    | 295              | 295                   | 295       | 295                   | 295                   | 295                    | 295              | 295                   | 295              | 295                    | 295              | 295                    | 295              | 295                    | 295              | 295                    | 295              | 295                    | 596                                          | 297              | 297              | 297               | 900   | 067   | 296              | 297        | 297               |      | 298                          |               | 298                      | 4                     | 596              | 299                                                                | 599              | 599              | 599              | 599              | 299              | 300                                                                                      |
|      | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> | (q)      | -25.75                | -23.53                 | -24.64           | -22.84                 | -23.71           | -22.27                | -22.97    | -21.79                | -22.43                | -21.43                 | -22.07           | -21.17                | -21.89           | -21.02                 | -21.91           | -20.98                 | -22.12           | -21.04                 | -22.51           | -21.21                 | -23.09           | -21.49                 | -38.68                                       | -38.72           | -29.05           | -29.64            | 03.96 | 50.09 | -35.45<br>-35.46 | -28.52     | -26.37            |      |                              |               |                          | 1                     | -35.90           |                                                                    |                  |                  |                  |                  |                  |                                                                                          |
|      | ΔV, cn                                         | (a)      |                       |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        |                                              |                  |                  |                   |       |       |                  |            |                   |      | -30.2                        |               | -30.9                    |                       |                  | -27.6                                                              | -33.0            | -33.0            | -43.5            | -59.0            | -88              | -13.2                                                                                    |
| ō jo | ×                                              | data     |                       |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        |                                              |                  |                  |                   |       |       |                  |            |                   |      | 15                           |               | 15                       |                       |                  | =                                                                  | =                | Ξ                | =                | =                | Ξ                | Ξ                                                                                        |
|      | ď                                              | kbars    |                       |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        |                                              |                  |                  |                   |       |       |                  |            |                   |      | 9                            |               | 9                        |                       |                  | 2                                                                  | 2                | 2                | 2                | 2                | 2                | 6.5                                                                                      |
|      |                                                | T, °C    | 0                     | 0                      | 2                | 5                      | 10               | 10                    | 15        | 15                    | 20                    | 20                     | 25               | 25                    | 30               | 30                     | 35               | 35                     | 40               | 40                     | 45               | 45                     | 20               | 20                     | 0                                            | 0                | 0                | 0                 | ų     | 2 6   | S 53             | 25         | 52                |      | 25                           |               | 25                       | ,                     | 20               | 25                                                                 | 99.4             | 100              | 150              | 200              | 250              | 25                                                                                       |
|      |                                                | Solvent  | H <sub>2</sub> 0      | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0      | т,<br>П,О | H,0                   | ,<br>H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0      | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0 | H <sub>2</sub> 0       | H <sub>2</sub> 0                             | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> O- | NaC   | Q (   | 0 G              | 0°H        | H <sub>2</sub> O- | NaCl | H <sub>2</sub> 0             |               | H <sub>2</sub> 0         |                       | H <sub>2</sub> 0 | H <sub>2</sub> 0                                                   | H <sub>2</sub> 0 | H <sub>2</sub> O | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> 0 | Н2О                                                                                      |
|      |                                                | Reaction |                       |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        | B(OH)₄⁻ + H⁺                                 |                  |                  |                   |       |       |                  |            |                   |      |                              |               |                          |                       |                  | + H+                                                               |                  |                  |                  |                  |                  | <sub>2</sub> AsO <sub>2</sub> + H <sup>+</sup>                                           |
|      |                                                |          | $H_2O \to H^+ + OH^-$ |                        |                  |                        |                  |                       |           |                       |                       |                        |                  |                       |                  |                        |                  |                        |                  |                        |                  |                        |                  |                        | $B(OH)_3 + H_2O \rightarrow B(OH)_4^- + H^+$ |                  |                  |                   |       |       |                  |            |                   |      |                              |               |                          |                       |                  | H <sub>2</sub> CO <sub>3</sub> → HCO <sub>3</sub> + H <sup>+</sup> |                  |                  |                  |                  |                  | Me <sub>2</sub> AsO <sub>2</sub> H → Me <sub>2</sub> AsO <sub>2</sub> " + H <sup>+</sup> |
|      |                                                | o<br>N   | -                     | 2                      | က                | 4                      | 5                | 9                     | 7         | 80                    | 6                     | 10                     | Ξ                | 12                    | 13               | 4                      | 15               | 16                     | 17               | 8                      | 19               | 50                     | 21               | 22                     | 23                                           | 24               | 52               | 56                | 7.0   | 7 6   | 9 60<br>70 70    | 300        | 31                |      | 32                           | ,             | 33                       | ;                     | 34               | 32                                                                 | 36               | 37               | 38               | 39               | 40               | <del>1</del>                                                                             |

| ontinued)     |
|---------------|
| $\mathcal{Z}$ |
| =             |
| >             |
| Ш             |
| 8             |
| ⋖             |
| $\vdash$      |

|     |                                                                                                                                  |                  |         |                                              | S. P       |        |                                                |     |                                            | 1 |
|-----|----------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------------------------------------------|------------|--------|------------------------------------------------|-----|--------------------------------------------|---|
|     |                                                                                                                                  |                  |         | σ,                                           | ×          | ΔV, cn | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> |     |                                            |   |
| ò   | Reaction                                                                                                                         | Solvent          | 7, °C   | kbars                                        | data       | (a)    | <b>(</b> Q)                                    | Ref | Remarks                                    |   |
| 91  |                                                                                                                                  | H <sub>2</sub> O | 30      | 1.2                                          | 7          | -12.0  | -11.9                                          | 306 |                                            | ı |
| 92  |                                                                                                                                  | H <sub>2</sub> 0 | 35      | 1.2                                          | 7          | -12.1  | -11.9                                          | 306 | •                                          |   |
| 93  | MeCH(OH)COOH → MeCH(OH)COO + H+                                                                                                  | H <sub>2</sub> 0 | 25      | 1.2                                          | 7          | -13.5  | -13.4                                          | 306 |                                            |   |
| 94  |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 1.2                                          | 7          | -13.4  | -13.4                                          | 306 |                                            |   |
| 95  |                                                                                                                                  | Н20              | 35      | 1.2                                          | 7          | -13.6  | -13.4                                          | 306 |                                            |   |
| 96  | EtCH(OH)COOH → EtCH(OH)COO~ + H+                                                                                                 | H <sub>2</sub> 0 | 25      | 1.2                                          | 7          | -13.8  | -13.8                                          | 306 |                                            |   |
| 97  |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 2. 5                                         | ۲ -        | -13.9  | -13.8                                          | 306 |                                            |   |
| 86  | +                                                                                                                                | H <sub>2</sub> 0 | 35      | 7 9                                          | - 1        | -13.9  | -13.8                                          | 306 |                                            |   |
| 6 6 | PrCH(OH)COOH → PrCH(OH)COO → H +                                                                                                 | 0 G              | \$ 8    |                                              | ~ 1        | 13.8   | -13.7                                          | 306 |                                            |   |
| 3 5 |                                                                                                                                  | O C              | 35      | <u>,                                    </u> |            | 13.9   | 13.8<br>  13.8                                 | 306 |                                            |   |
| 102 | Buchoncoon → Buchoncoo + + +                                                                                                     | 0 G              | 25.     | <u>;</u> 2                                   |            | -14.0  | -13.8                                          | 306 |                                            |   |
| 103 |                                                                                                                                  | 0°H              | )<br>(8 | 1 2                                          | . ~        | 14.1   | -13.9                                          | 306 |                                            |   |
| 104 |                                                                                                                                  | 0°H              | 35      | 1.2                                          | 7          | -14.0  | -13.9                                          | 306 |                                            |   |
| 105 | $Me_2C(OH)COOH \rightarrow Me_2C(OH)COO^- + H^+$                                                                                 | H <sub>2</sub> 0 | 25      | 1.2                                          | 7          | -14.1  | -14.0                                          | 306 |                                            |   |
| 106 |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 1.2                                          | 7          | -14.2  | -14.0                                          | 306 |                                            |   |
| 107 |                                                                                                                                  | H <sub>2</sub> 0 | 35      | 1.2                                          | 7          | -14.1  | -14.0                                          | 306 |                                            |   |
| 108 | FPCH(0H)C00H → FPCH(0H)C00- + H+                                                                                                 | H <sub>2</sub> 0 | 25      | 1.2                                          | 7          | -13.9  | -13.9                                          | 306 |                                            |   |
| 109 |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 1.2                                          | 7          | -14.1  | -13.8                                          | 306 |                                            |   |
| 110 |                                                                                                                                  | H <sup>2</sup> 0 | 35      | <del>.</del> 5                               | 7          | -14.1  | -13.8                                          | 306 |                                            |   |
| = : | MeCH(OH)CH2COOH MeCH(OH)CH2COO + HT                                                                                              | H <sub>2</sub> O | 52      | 7.                                           | <b>,</b> , | -12.4  |                                                | 306 |                                            |   |
| 112 |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 2. 5                                         | - 1        | -12.5  |                                                | 306 |                                            |   |
| 13  |                                                                                                                                  | H <sub>2</sub> 0 | 32      | 7.5                                          | 1          | -12.7  |                                                | 306 |                                            |   |
| 114 | HOCH2CH2COOH → HOCH2CH2CH2COO + H+                                                                                               | H <sub>2</sub> 0 | 25      | 1.2                                          | 7          | -13.0  |                                                | 306 |                                            |   |
| 115 |                                                                                                                                  | H <sub>2</sub> 0 | 30      | 1.2                                          | 7          | -13.1  |                                                | 306 |                                            |   |
| 116 |                                                                                                                                  | H <sub>2</sub> 0 | 35      | 1.2                                          | 7          | -13.3  |                                                | 306 |                                            |   |
| 117 | $A+000CCH(OH)CH(OH)COOH \rightarrow A+000CCH(OH)CH(OH)COO + H^+$                                                                 | H <sub>2</sub> 0 | 25      |                                              |            |        | -11.96                                         | 306 |                                            |   |
| 118 |                                                                                                                                  | H <sub>2</sub> 0 | 30      |                                              |            |        | -11.78                                         | 306 |                                            |   |
| 119 |                                                                                                                                  | H <sub>2</sub> 0 | 35      |                                              |            |        | -11.75                                         | 306 |                                            |   |
| 120 | d-HOOCCH(OH)CH(OH)COO - → d-00CCH(OH)CH(OH)COO + H+                                                                              | H <sub>2</sub> 0 | 52      |                                              |            |        | -13.37                                         | 306 |                                            |   |
| 121 |                                                                                                                                  | O 7              | 35      |                                              |            |        | - 13.38<br>- 13.49                             | 306 |                                            |   |
| 123 | HOOCCH <sub>3</sub> NH <sub>3</sub> <sup>+</sup> → <sup>-</sup> OOCCH <sub>5</sub> NH <sub>3</sub> <sup>+</sup> + H <sup>+</sup> | 0°H              | 25      | 2.8                                          | 9          | -8.1   | )<br>;                                         | 279 | $\mu = 0.2 \text{ M (NaNO}_3)$             |   |
|     | HO NO HO NO                                                                                                                      | ı                |         |                                              |            |        |                                                |     |                                            |   |
|     |                                                                                                                                  |                  |         |                                              |            |        |                                                |     |                                            |   |
| 124 | .H + .000—(○) ← H000—(○)                                                                                                         | Н2О              | 25      | 2                                            | 5          | -4.6   |                                                | 307 | $\mu = 0.5 \mathrm{M} \mathrm{(HCI)}$      |   |
|     | NO                                                                                                                               |                  |         |                                              |            |        |                                                |     |                                            |   |
|     |                                                                                                                                  | :                |         |                                              |            |        |                                                | ;   |                                            |   |
| 125 | PhOH → PhO + H+                                                                                                                  | Q C              | 25      |                                              |            |        | -18.7                                          | 308 |                                            |   |
| 97  |                                                                                                                                  | 28               | C7      |                                              |            |        | 1<br>4.0<br>4.0                                | 700 |                                            |   |
|     | , NO <sub>2</sub> , NO <sub>2</sub>                                                                                              |                  |         |                                              |            |        |                                                |     |                                            |   |
| ļ   | X(                                                                                                                               | :                |         | ,                                            | •          |        |                                                | ļ   |                                            |   |
| 127 | .H + -0 - Ho                                                                                                                     | H <sub>2</sub> O | જ       | N                                            | က          | -13.5  |                                                | 307 | Phosphate buffer, $\mu = 0.124 \mathrm{M}$ |   |
|     |                                                                                                                                  |                  |         |                                              |            |        |                                                |     |                                            |   |

| Phosphate buffer, |                                      | Phosphate buffer, $\mu = 0.05 \mathrm{M}$ | Cacodylate buffer                                        |                  |                  |                  |                  | Acetate buffer, $\mu = 0.06 \text{ M}$ | Acetate buffer, $\mu=0.05~{ m M}$ | Acetate buffer | Acetate buffer, $\mu = 0.022 \mathrm{M}$ | Phosphate buffer, $\mu = 0.05  M$ | Phosphate buffer, $\mu = 0.078  \mathrm{M}$ | $\mu = 1.0 \mathrm{M} (\mathrm{HCl})$ |
|-------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------|------------------|------------------|------------------|----------------------------------------|-----------------------------------|----------------|------------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------|
| 307               | 309<br>308                           | 307                                       | 300<br>309<br>308                                        | 308              | 308              | 309              | 309              | 307                                    | 307                               | 300            | 307                                      | 307                               | 307                                         | 307                                   |
|                   | -12.8 <b>4</b><br>-13.6              |                                           | -11.32<br>-11.9                                          | -12.9            | -13.0            | -13.35           | -12.21           |                                        |                                   |                |                                          |                                   |                                             |                                       |
| -14.1             |                                      | -10.9                                     | -11.3                                                    |                  |                  |                  |                  | -11.0                                  | -11.9                             | -11.3          | -14.7                                    | -11.3                             | -14.2                                       | 6.6-                                  |
| 22                |                                      | S                                         | =                                                        |                  |                  |                  |                  | c)                                     | 5                                 | Ξ              | 5                                        | 2                                 | 2                                           | 2                                     |
| 2                 |                                      | 8                                         | 6.5                                                      |                  |                  |                  |                  | 2                                      | 8                                 | 6.5            | 8                                        | 7                                 | 2                                           | 2                                     |
| 25                | 25<br>25                             | 25                                        | 25<br>25<br>25                                           | 25               | 25               | 25               | 25               | 25                                     | 25                                | 25             | 25                                       | 25                                | 25                                          | 25                                    |
| H <sub>2</sub> 0  | H <sub>2</sub> O<br>H <sub>2</sub> O | H <sub>2</sub> 0                          | Н <sub>2</sub> О<br>Н <sub>2</sub> О<br>Н <sub>2</sub> О | H <sub>2</sub> O | H <sub>2</sub> O | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> O                       | O <sub>2</sub> H                  |                | H <sub>2</sub> O                         | H <sub>2</sub> O                  | H <sup>2</sup> 0                            | H <sub>2</sub> 0                      |

| _             |
|---------------|
| ы             |
| ₫.            |
| 3             |
| .5            |
| Ħ             |
| ⊼             |
| 77            |
|               |
| $\mathcal{Z}$ |
| 2             |
| _             |
|               |
| _             |
| Ý             |

| TABLE      | TABLE V (Continued)                                                                               |                                      |          |             |                  |                                                        |            |                                                   |
|------------|---------------------------------------------------------------------------------------------------|--------------------------------------|----------|-------------|------------------|--------------------------------------------------------|------------|---------------------------------------------------|
| <u></u>    | Reaction                                                                                          | Solvent                              | 1, °C    | P,<br>kbars | No.<br>of × data | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> (a) (b) | Ref        | Remarks                                           |
| Ž          | Br Br                                                                                             |                                      |          |             |                  |                                                        |            |                                                   |
| 146        | Pr<br>Br<br>Br<br>Br<br>AH-                                                                       | O <sup>z</sup> H                     | 25       | 8           | လ                | -12.7                                                  | 307        | Acetate buffer, $\mu = 0.11 \mathrm{M}$           |
| 147        | $O_2N$ OH $O_2$ OH $O_2$ NO2                                                                      | 0²H                                  | 25       | 8           | c,               | -8.2                                                   | 307        | Acetate buffer, $\mu=0.015\mathrm{M}$             |
| 148        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | H <sub>2</sub> O                     | 25       | 8           | ω                | -21.1                                                  | 307        | Phosphate buffer, $\mu = 0.072 \mathrm{M}$        |
| 149        | :H+ 0 0 10 15 15 15 15 15 15 15 15 15 15 15 15 15                                                 | O <sup>2</sup> H                     | 52       | Ø           | co.              | -17.2                                                  | 307        | Carbonate buffer, $\mu = 0.063 \mathrm{M}$        |
| 150        | NO2 NO2                                                                                           | P₂O                                  | 25       | N N         | လ                | -17.1                                                  | 307        | Carbonate buffer, $\mu = 0.063 \mathrm{M}$        |
| 151        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | H <sub>2</sub> O                     | 52       | N           | S                | 6.6-                                                   | 307        | $\mu = 0.024 \mathrm{M}\mathrm{(HCl-NaCl)}$       |
| 152        | +H + O O HO O HO N'O                                                                              | H <sub>2</sub> O                     | 25       | ₩.          | S.               | -11.8                                                  | 307        | $\mu = 0.005 \text{ M (HCl)}$                     |
| 153        | ONO ← I                                                                                           | O <sup>2</sup> H                     | 25       | 8           | 2                | -11.6                                                  | 307        | Phosphate buffer, $\mu=0.035~{ m M,}~c$           |
| 154<br>155 | PhSH → PhS <sup>-</sup> + H <sup>+</sup><br>phenol red → phenol red <sup>-</sup> + H <sup>+</sup> | H <sub>2</sub> O<br>H <sub>2</sub> O | 25<br>25 | 2.8         | 9                | -12.76<br>-11.6                                        | 310<br>279 | Ammonium buffer, $\mu = 0.2 \text{ M (NaNO}_3)$   |
| 156        | bromcresol green → bromcresol green - + H+                                                        | Н20                                  | 25       | 2.8         | 9                | -16.8                                                  | 279        | Acetate buffer,<br>$\mu = 0.2 \text{ M (NaNO}_3)$ |

| Acetate buffer,                          | $\mu = 0.2 \text{ M (NaNO}_3)$ Phosphate buffer | = 0.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                  |                  |                  |                  |                  |                  |      |                  |                                       |        |                  |                  |                  |                         |            |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  |                                                     | p-Nitrophenol indicator                                           | $= 0.2 \text{ M (NaNO}_3)$ |                                   |                  |
|------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------|------------------|---------------------------------------|--------|------------------|------------------|------------------|-------------------------|------------|----------------------|---------------|----------|------------------|----------------------|--------------------------|------------------|------------------|------------------|------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|------|------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|----------------------------|-----------------------------------|------------------|
| Ace                                      | Pho                                             | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | ţ                | ţ                | •                | +                | •                | ţ                | ŧ    | ŧ                | 6                                     | 6      | ų                | ų                | 6                | i                       | 9          |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  | :                                                   | N I                                                               | 11                         |                                   |                  |
| 279                                      | 298                                             | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 312                                                           | 313              | 313              | 313              | 313              | 313              | 313              | 313  | 313              | 313                                   | 313    | 313              | 313              | 313              | 313                     | 313        | 317                  | 317           | 5        | 317              | 317                  | 317                      | 317              | 318              | 319              | 319              | 910                                                | 319                                                                                                                 | 319      | 319  | 319  | 319                                                              | 319                                                 | 300                                                               | 320                        | 319                               | 319              |
|                                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +7 00 6                                                       | +7.0             | +5.6             | +5.4             | +4.7             | +4.3             | +4.3             | +4.3 | +4.4             | +5.1                                  | +2.8   | +2.2             | +2.5             | +6.0             | +1.8                    | +0.1       | +7.4                 | +74           | <u>.</u> | +6.2             | +6.2                 | +6.2                     | +6.8             | +6.5             | +6.2             | 45.6             | +0.9<br>-1                                         | +6.7<br>+6.7                                                                                                        | +5.6     | +5.4 | +4.7 | +5.0                                                             | +2.9                                                |                                                                   | + 18 4                     | +16.4                             | +10.0            |
| -12.8                                    | -10.1                                           | ρ0.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                  |                  |                  |                  |                  |                  |      |                  |                                       |        |                  |                  |                  |                         |            |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  |                                                     | <del>-</del>                                                      | + 1.9                      |                                   |                  |
| 9                                        | 15                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                  |                  |                  |                  |                  |                  |      |                  |                                       |        |                  |                  |                  |                         |            |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  |                                                     |                                                                   |                            |                                   |                  |
| 5.8                                      | 9                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                  |                  |                  |                  |                  |                  |      |                  |                                       |        |                  |                  |                  |                         |            |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  |                                                     | Ξ                                                                 | 9                          |                                   |                  |
|                                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |                  |                  |                  |                  |                  |                  |      |                  |                                       |        |                  |                  |                  |                         |            |                      |               |          |                  |                      |                          |                  |                  |                  |                  |                                                    |                                                                                                                     |          |      |      |                                                                  | 1                                                   | 6.5                                                               | 5.8                        |                                   |                  |
| 25                                       | 25                                              | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                            | 25               | 25               | 25               | 25               | 25               | 25               | 25   | 25               | 25                                    | 25     | 25               | 25               | 22               | 25                      | <b>c</b> 7 | 25                   | 25            | ŝ        | 25               | 25                   | 25                       | 25               | 25               | 25               | 25               | 25                                                 | 22                                                                                                                  | 52<br>52 | 25   | 25   | 2                                                                | 25                                                  | 25                                                                | 25<br>25                   | 2.5<br>5.5                        | 25               |
| H <sub>2</sub> O                         | H <sub>2</sub> 0                                | Н <sub>2</sub> О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                           | H <sub>2</sub> 0 | H <sub>2</sub> O | Н2О  | H <sub>2</sub> 0 | H <sub>2</sub> 0                      | $H_2O$ | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> 0 | )<br>0<br>1             | )<br>[     | H <sub>2</sub> O     | Ç             | 2        | H <sub>2</sub> 0 | H <sub>2</sub> O     | H <sub>2</sub> 0         | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> 0 | H <sub>2</sub> O | Σ<br>Σ<br>Σ<br>Σ                                   | )<br>C C                                                                                                            | Ç Ç      | 0°H  | 02H  | H <sub>2</sub> 0                                                 | H <sub>2</sub> 0                                    | H <sub>2</sub> 0                                                  | 0,0                        | )<br>C                            | H <sub>2</sub> O |
| 7 bromphenol blue * bromphenol blue + H+ | 3 cresol red → cresol red → H+  O.N COO O.N COO | $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ $ | M <sub>4</sub> <sup>+</sup> + M <sub>3</sub> + H <sup>+</sup> |                  | MeNH             |                  |                  |                  |                  |      |                  | $Me_2NH_2^+ \rightarrow Me_2NH + H^+$ |        |                  |                  |                  | EtgMeNHT -> EtgMeN + H+ |            | .H + H. O → .Z-N O 1 | NHMe. WE + H. |          | HV NH NH + H.    | HN NHMG: HN NMe + H' | MeN NHMe: → MeN NMe + H: | .H + N           |                  |                  |                  | MeOCH <sub>2</sub> CH <sub>2</sub> NH <sub>3</sub> | Med(CH <sub>2</sub> ) <sub>3</sub> NH <sub>3</sub> ' · · · MeU(CH <sub>2</sub> ) <sub>3</sub> NH <sub>2</sub> + H ' |          |      |      | HOCH <sub>2</sub> CH <sub>2</sub> NHMe <sub>2</sub> <sup>+</sup> | HOCH <sub>2</sub> CH <sub>2</sub> NHEt <sub>2</sub> | (HOCH <sub>2</sub> ) <sub>2</sub> CNH <sub>3</sub> <sup>+</sup> • |                            | H3N+CH2CH2NH3+ M2NCH2CH2NH2 + 2H+ |                  |
| 157                                      | 158                                             | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                                           | 161              | 162              | 163              | 164              | 165              | 166              | 167  | 168              | 169                                   | 170    | 171              | 172              | 1/3              | 174                     | 2          | 176                  | 177           |          | 178              | 179                  | 180                      | 181              | 182              | 183              | 184              | 185                                                | 186                                                                                                                 | 188      | 189  | 190  | 191                                                              | 192                                                 | 193                                                               | 194                        | 195                               | 197              |

| ned)     |
|----------|
| ntin     |
| <u>છ</u> |
| >        |
| 띪        |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          |             | ý.       |                                        |                                |            |                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|-------------|----------|----------------------------------------|--------------------------------|------------|--------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          | ۵           | <u>,</u> | $\Delta V_c \text{ cm}^3/\text{mol}^b$ | <sub>q</sub> loш/ <sub>E</sub> |            |                                                        |
| No.        | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solvent                                                           | 7, °C    | r,<br>kbars | data     | (a)                                    | (p)                            | Ref        | Remarks                                                |
| 198        | H <sub>2</sub> 'N NH <sub>2</sub> ' → H <sub>2</sub> 'N NH <sub>2</sub> + H'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> 0                                                  | 25       |             |          |                                        | +13.7                          | 317        |                                                        |
| 199        | $H_2^{-1}N$ NHMe' $\rightarrow$ HN NHMe+ + H'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H <sub>2</sub> 0                                                  | 25       |             |          |                                        | +14.3                          | 317        |                                                        |
| 200        | HMe'n NHMe' → Men NHMe' + H'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> O                                                  | 25       |             |          |                                        | +14.7                          | 317        |                                                        |
| 201        | H'M H' H'N H'N + H'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H <sub>2</sub> 0                                                  | 25       |             |          |                                        | +16.3                          | 317        |                                                        |
| 202        | $H_3N^+(CH_2CH_2NH_2^+)_2H \rightarrow H_2N(CH_2CH_2NH)_2H + 3H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H <sub>2</sub> O                                                  | 25       |             |          |                                        | +28.8                          | 320        |                                                        |
| 203<br>204 | H3N *(CH2CH2NH2 * )3H -> H2N(CH2CH2NH)3H + 4H<br>H3N *(CH2CH2NH3 * )4H -> H2N(CH2CH2NH)4H + 5H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                           | 52 52    |             |          |                                        | +32.6                          | 320        |                                                        |
| 205<br>206 | $H_3N^*(CH_2CH_2NH_2^+)_nH^+ \rightarrow H_2N(CH_2CH_2NH)_nH^+ (n+1)H^+$<br>$PhNH_3^+ \rightarrow PhNH_2^+ H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,20<br>1,20<br>1,20<br>1,20<br>1,20<br>1,20<br>1,20<br>1,20<br>1 | 25<br>25 |             |          |                                        | -0.5/<br>+4.42*                | 320<br>312 |                                                        |
|            | NO <sub>2</sub> NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          |             |          |                                        |                                |            |                                                        |
| 207        | NH3⁺ → {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> 0                                                  | 25       | 2           | 5        | +4.2                                   |                                | 321        | [HCI] = 1 m                                            |
| 208        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 <sup>2</sup> H                                                  | 25       | 5           | S        | +6.1                                   |                                | 321        | [HCI] = $0.002 \text{ m}$<br>[NaCI] = $0.01 \text{ m}$ |
| 209        | $O_{p}N \longrightarrow NH_{3}, \longrightarrow O_{2}N \longrightarrow NH_{2} + H^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H <sub>2</sub> 0                                                  | 25       | 2           | 5        | +6.5                                   |                                | 321        | [HCI] = 0.1 m                                          |
|            | NO <sub>2</sub> NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          |             |          |                                        |                                |            |                                                        |
| 210        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н₂О                                                               | 25       | 2           | 5        | +3.9                                   |                                | 321        | [HCI] = 0.5 m                                          |
| 211        | NH3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н2О                                                               | 25       | 5           | c,       | +3.8                                   |                                | 321        | [HCI] = 0.001  m<br>[NaCI] = 0.01  m                   |
| 212        | 0,N<br>0,N<br>0,N<br>0,N<br>0,N<br>0,N<br>0,N<br>0,N<br>0,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H <sub>2</sub> O                                                  | 25       | 2           | ري<br>د  | +5.0                                   |                                | 321        | [HCI] = 0.005 m                                        |
| 213        | $O_2N$ $O_3N$ $O_3N$ $O_3N$ $O_3N$ $O_3N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H <sub>2</sub> O                                                  | 25       | 2           | 5        | +2.8                                   |                                | 321        | [HCI] = 0.001 m                                        |
| 214        | $O_{p}N \longrightarrow O_{p}N \longrightarrow O$ | H <sub>2</sub> O                                                  | 25       | 2           | 5        | +4.7                                   |                                | 321        | [HCI] = 0.1 m                                          |

| _        |   |
|----------|---|
| ned      |   |
| ntin     |   |
| 2        |   |
| <u>_</u> | ֡ |
| AR       |   |

| TABLE V    | TABLE V (Continued)                                                                                                      |                               |                  |             |                |                                                    |           |      |                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-------------|----------------|----------------------------------------------------|-----------|------|-------------------------------------------------------------|
|            |                                                                                                                          |                               |                  |             | No.            |                                                    |           |      |                                                             |
|            |                                                                                                                          | Column                        | J <sub>0</sub> 1 | P,<br>kbars | ete<br>≥ × teb | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> (a) | q lou     | Ref  | Remarks                                                     |
| Š.         | Reaction                                                                                                                 | COLECTI                       | -                |             | :              |                                                    | -07       | 331  | [Ca] = 0.05 M                                               |
| 247        | Cu(II) malonate $\rightarrow$ 00CCH <sub>2</sub> COO + Cu <sup>2+</sup>                                                  | H <sub>2</sub> O              | දු ද             |             |                |                                                    | -20       | 33.1 | - II                                                        |
| 248        |                                                                                                                          | H <sub>2</sub> O-urea         | ું.              |             |                |                                                    |           | ;    | [Urea] = 8 M                                                |
|            | +8.00000 0000000000000000000000000000                                                                                    | O.H                           | 30               |             |                |                                                    | -29       | 331  | [Cu] = 0.05 M                                               |
| 249        | Cu(II) tartrate -+ -00CCH(OH)CH(OH)COO + Cu-                                                                             | 2 4                           | 30               |             |                |                                                    | -28       | 331  | [Cu] = 0.05 M                                               |
| 250        | Cu(ii) maleate → "OUCCH==CHCOO" → Cu                                                                                     | H <sub>2</sub> O-urea         | 30               |             |                |                                                    | -22       | 331  | [Cu] = 0.05 M                                               |
| - 67       |                                                                                                                          | •                             | Ļ                | ļ           | Ţ              | 80                                                 |           | 332  |                                                             |
| 252        | $[Co(NH_3)_6]SO_4^+ \rightarrow Co(NH_3)_6^{3+} + SO_4^{2-}$                                                             | H <sub>2</sub> 0              | را<br>د د        |             | = ;            | 0.01                                               |           | 332  |                                                             |
| 253        |                                                                                                                          | H <sub>2</sub> O              | £ 73             | 5.1         | = =            | -4.5                                               |           | 332  |                                                             |
| 254        |                                                                                                                          | 0 5                           | }                |             | - v            | -17.5                                              |           | 272  | $[HClO_4] = 0.2 M$                                          |
| 255        | $FeNCS^{2+} \rightarrow Fe^{3+} + NCS^{-}$                                                                               | O C H                         | 25               | ţ           | ò              | <u>.</u>                                           | -17       | 272  | At high dilution                                            |
| 256        |                                                                                                                          | Q <sup>2</sup> H              | 25               | 2           | 5              | -8.9                                               |           | 273  | $\mu = 0.2 \text{ m (NaClO_4)}$                             |
| 257        | - to to to to to                                                                                                         | 02<br>120<br>130              | 52               | . 2         | 5              | -240                                               |           | 273  | $\mu = 0.2 \text{m}  (\text{NaCIO}_4)$                      |
| 258        | FeOH<+ → Fe <sup>3+</sup> + OH                                                                                           | 0°H                           | 25               | 2.8         | 5              | -4.6                                               |           | 274  | $\mu = 1.5 \text{M} (\text{NaCiO}_4)$                       |
| 259        | FeCl <sup>2+</sup> → Fe <sup>2+</sup> + Ci                                                                               | 0°H                           | 30               |             |                |                                                    | -3.4      | 333  | $[NaCIO_4] = 1 M$                                           |
| 260        | Ceno,                                                                                                                    | ) CH                          | 30               |             |                |                                                    | -0.8      | 333  | $[NaClO_4] = 1 M$                                           |
| 261        | $CeCl^{z+} \rightarrow Ce^{z+} + Cl^{-}$                                                                                 | Q.H                           | 30               |             |                |                                                    | -23.6     | 333  | il                                                          |
| 262        | CeOOCEt²+ → Ce³+ + EtCOO                                                                                                 | 0°H                           | 308              |             |                |                                                    | -15.1     | 333  | 11                                                          |
| 263        | CeSO4 - Ce3 + SO4                                                                                                        | 02H                           | 30               |             |                |                                                    | -4.2      | 333  | II                                                          |
| 264        | $EuNO_3^{-1}$ $\rightarrow EU^{-1} + NO_3$                                                                               | 0°H                           | 30               |             |                |                                                    | -19.4     | 333  | $[NaClO_4] = 1 M$                                           |
| 202        |                                                                                                                          | OŽH                           | 30               |             |                |                                                    | -20.6     | 333  |                                                             |
| 267        | $Co(NH_s)_EOOCE^{2+} \rightarrow Co(NH_s)_EH_sO^{3+} + EtCOO^-$                                                          | H <sub>2</sub> O              | 30               |             |                |                                                    | -17.4     | 333  | [NaCIO4] = 1 M                                              |
| 268        |                                                                                                                          | Н20                           | 30               |             |                |                                                    | 19.0      | 333  | $[NaCiO_s] = 1M$                                            |
| 269        | $Co(NH_3)_5Cl^{2+} \rightarrow Co(NH_3)_5H_2O^{3+} + Cl^-$                                                               | H <sub>2</sub> O              | တ္က ဗ            |             |                |                                                    | 4.01-I    | 333  | - 11                                                        |
| 270        | $Co(NH_3)_5Br^{2+} \rightarrow Co(NH_3)_5H_2O^{3+} + Br^{-}$                                                             | H <sub>2</sub> 0              | ရှင်             |             |                |                                                    | 0.9-      | 333  | 11                                                          |
| 27.1       | $Co(NH_3)_5NO_3^{2+} \rightarrow Co(NH_3)_5H_2O^{3+} + NO_3^{-}$                                                         | 0 H<br>10 H                   | 9 e              |             |                |                                                    | -15.2     | 333  | - 11                                                        |
| 272        | $Co(NH_3)_5SO_4^+ \rightarrow Co(NH_3)_5H_2O^{3+} + SO_4^2$                                                              | O C                           | 90               |             |                |                                                    | -19.2     | 333  |                                                             |
| 273        | $Co(NH_3)_5SO_4^+ \rightarrow Co(NH_3)_5H_2O^{-1} + SO_4^-$                                                              | S T                           | 3                |             |                | -2.6                                               |           | 246  | 2                                                           |
| 274        | [Co(en) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ]HC <sub>2</sub> O <sub>4</sub> ***                                 | 0°H                           | 30               |             |                |                                                    | 7—        | 331  | [Cu] = 0.05 M                                               |
| 275        |                                                                                                                          | H <sub>2</sub> 0-urea         | 30               |             |                |                                                    | -2        | 331  | [Cu] = 0.05 M                                               |
| 2/0        |                                                                                                                          |                               |                  |             |                |                                                    | 1         | 334  | [Orea] = 8 M<br>[Cu] = 0.05 M                               |
| 777        | MeCOOCu <sup>+</sup> • Cu <sup>2+</sup> + MeCOO <sup>-</sup>                                                             | H <sub>2</sub> 0              | 30               |             |                |                                                    | 1 2       | 33.4 | $[C_{ij}] = 0.05 \mathbf{M}$                                |
| 278        |                                                                                                                          | H <sub>2</sub> O-urea         | 90               |             |                |                                                    | 2.2       | 3    | [cd]                                                        |
|            |                                                                                                                          | =                             | ć                |             |                |                                                    | -13       | 331  | Cu  = 0.05 M                                                |
| 279        | $EtCOOCu^+ \rightarrow Cu^{2+} + EtCOO^-$                                                                                | H <sub>2</sub> O              | 9 9              |             |                |                                                    | -11       | 331  | [Cu] = 0.05 M,                                              |
| 280        |                                                                                                                          | n <sub>2</sub> O- <b>u</b> ea | 3                |             |                |                                                    |           |      | [Urea] = 8 M                                                |
|            |                                                                                                                          | H,0                           | 30               |             |                |                                                    | -14       | 331  | [Cu] = 0.05 M                                               |
| 281        |                                                                                                                          | H <sub>2</sub> O              | 25               | 2.8         | 9              | -13.4                                              | Ļ         | 279  | $\mu = 0.2 \text{ M (NaNO_3)}$                              |
| 202        | I NCHMACOOCA, + → CA, 2+ + HaNCHMACOO                                                                                    | H <sub>2</sub> 0              | 30               |             |                |                                                    | - 15<br>- | 331  |                                                             |
| 284<br>284 | HyNCH, COOC0 $^+$ $\rightarrow$ Co <sup>2+</sup> $+$ HyNCH, COO <sup>-</sup>                                             | H <sub>2</sub> O              | 25               | 2.8         | 9 (            | -7.3                                               |           | 279  | $\mu = 0.2 \text{ M (NaNO3)}$ $\mu = 0.2 \text{ M (NaNOs)}$ |
| 285        | H <sub>2</sub> NCH <sub>2</sub> COONi <sup>+</sup> → Ni <sup>2+</sup> + H <sub>2</sub> NCH <sub>2</sub> COO <sup>-</sup> | H <sub>2</sub> 0              | 25               | 2.8         | ۰ ٦            | -2.1                                               |           | 283  | $\mu = 0.1 \text{ M (NaClO4)}$                              |
| 286        | $Nimu^+ \rightarrow Ni^{2+} + mu$                                                                                        | H <sub>2</sub> O              | 52               | <u>c:</u>   | 4              | 0.77_                                              |           | 3    | L                                                           |
|            |                                                                                                                          |                               |                  |             |                |                                                    |           |      |                                                             |

| $H_2NCH_2COOZn^+ \rightarrow Zn^{2+} + H_2NCH_2COO^-$<br>NaSO <sub>4</sub> - $\rightarrow$ Na <sup>+</sup> + SO <sub>4</sub> <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0 H              | 25<br>1.5      | 2.8        | 9 ဧ    | -5.2<br>-15.8    |      | 279<br>334 | $\mu = 0.2 \text{ M (NaNO_3)}$<br>[NaCl] = 0.11 M, |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------|--------|------------------|------|------------|----------------------------------------------------|
| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                |            |        |                  |      |            | $[Na_2SO_4] = 0.29 M$                              |
| + Cn <sub>2</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> O   | 30             |            |        |                  | -1.7 | 331        | $[Cu] = 0.05 \mathrm{M}$                           |
| $Co(pada)^{2+} \rightarrow Co^{2+} + pada$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H <sub>2</sub> 0   | 25             | 2.1        | 9      | -5.8             |      | 276        | $\mu = 0.1 \mathrm{M} (\mathrm{NaNO}_3)$           |
| CONH3" - CO-1 + NH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> 0   | 10             | 1.4        | 7      | +8.6             |      | 276        | $\mu = 0.1 \mathrm{M} (\mathrm{NH_4NO_3})$         |
| Mighty 2+ 1 and 1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H <sub>2</sub> 0   | 49             | 2.1        | 9      | -0.9             |      | 276        | $\mu = 0.1 \text{M} (\text{NaNO}_3)$               |
| NINT3**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H <sub>2</sub> 0   | 30             | 1.4        | 2      | +2.3             |      | 276        | $\mu = 0.1 \mathrm{M}  (\mathrm{NH_4NO_3})$        |
| ELUN JETU FK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EtOH               | 45             | -          | 2      | -39              |      | 164        | · · · · · · · · · · · · · · · · · · ·              |
| Metado meta + Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ProH               | 25             | က          | 7      | $-16.2^{p}$      |      | 335        |                                                    |
| Nafi - Na+(Thr Ci-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ProH             | 25             | က          | 7      | -20.7            |      | 335        |                                                    |
| ואמני בואמ   וווג   בן                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>‡</u>           | ~22            | 2          | 9      | -16              |      | 336,       | đ                                                  |
| NaFI → Na <sup>+</sup> DME FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DME                | ~              | ď          | Ú      | č                |      | 337        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 77<br>~        | י כ        | 9      | 171              |      | 33/        | b                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •<br>•             | 77 —           | n          | 0      | 01               |      | 336,       | b                                                  |
| [FE] → [FF] → [FF]   FF]   FF | 雅                  | ~22            | 2.5        | 9      | -11              |      | 337        | 0                                                  |
| LIFT -> LI '   Me! FF   FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-MeTHF            | <b>≈</b> 22    | 2.5        | 9      | -23              |      | 337        | <i>b</i>                                           |
| LIFI ≠ LI '   glyme  FI<br>i iEl → aboma l'iEl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Et <sub>2</sub> O  | ≃22            | 5          | 9      | 7-               |      | 338        | Ь                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Et <sub>2</sub> 0  | $\sim$ 22      | 5          | 9      | +5               |      | 338        |                                                    |
| gymetri z ci jgjymejri<br>Ti2CsH.Fi⇒ i≠lMathelo C u ci-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Et <sub>2</sub> O  | ~22            | 2          | 9      | -11              |      | 338        |                                                    |
| CACL: + CA2+ + ACI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-MeTHF            | $\simeq 22$    | က          | 7      | -38              |      | 337        | b                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EFOH               | RT             | 2.5        | 9      | -154             |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FOH                | RT             | 2.9        | 9      | -396             |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HON .              | RT             | 4.9        | 80     | -497             |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - FauOH            | i i            | 7.8        | = '    | -425             |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HOH                | <u> </u>       | 8.6        | ၈ ၊    | -64.6            |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S-BUCH             | ¥ 5            | 7 C        | ٠ ،    | -33.7            |      | 341        |                                                    |
| $CoBr_2 \rightarrow Co^{2+} + 2Br^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MG2CO              | - G            | 8.7        | on L   | -34              |      | 342        |                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L CA               | B. E.          | ى<br>9. م  | ٠<br>د | -230.4           |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BuoH               | RT             | . <b>4</b> | ာဖ     | -247.3<br>-463.1 |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +BuOH              | R              | 7.8        | י יכ   | -330.5           |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>i</i> -PrOH     | RT             | 9.6        | 4      | -36.5            |      | 34.1       |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s-BuOH             | RT             | 8.6        | 2      | -29.2            |      | 341        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Me <sub>2</sub> CO | RT             | 7.8        | 6      | -36              |      | 342        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Me <sub>2</sub> CO | RT             | 7.8        | 6      | +2               |      | 342        |                                                    |
| NIC! 4 NIC! 2- T OC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Me <sub>2</sub> CO | RT             | 7.8        | 6      | +4               |      | 342        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s                  | -24.5          | 3.5        | 7      | +25              |      | 343        |                                                    |
| $C_2CO_{cc} \rightarrow C_2^2 + + CO_c^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s :                | -21            | ,          |        | +26.6            |      | 343        |                                                    |
| $\operatorname{Cd}(\operatorname{Cd}(3)) = \operatorname{Cd}(-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> O   | <del>-</del> 1 | 6.0        | 7      | -57.1            |      | 344        | Calcite                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <sub>2</sub> 0   | æ ;            | 0.8        | 9      | -57.5            |      | 344        | Calcite                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sup>2</sup> 0   | 23             | 6.0        | 13     | -54.9            |      | 344        | Calcite                                            |
| $CaF_{\mu\nu} \rightarrow Ca^{2+} + 2F^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 C                | ç, ç,          | - 0        | 9      | -58.0            |      | 344        | Calcite                                            |
| (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0                | R 8            | 8.0        | 9 1    | -44.3            |      | 344        |                                                    |
| SrSO <sub>4151</sub> → Sr <sup>2+</sup> + SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D C                | ξ, c           | ~ +        | ı,     | -43.4            |      | 344        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , E                | 2 66           |            | ဂ ေ    | 148.1            |      | 344        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 C                | 35             |            | ×οια   | -51.8            |      | 344        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ?                  | 3              | -          | n      | 7.00_            |      | 344        |                                                    |

Co(pada)<sup>2+</sup>  $\rightarrow$  Co<sup>2+</sup> + pada CoNH<sub>3</sub><sup>2+</sup>  $\rightarrow$  Co<sup>2+</sup> + NH<sub>3</sub> Ni(pada)<sup>2+</sup>  $\rightarrow$  Ni<sup>2+</sup> + pada NiNH<sub>3</sub><sup>2+</sup>  $\rightarrow$  Ni<sup>2+</sup> + NH<sub>3</sub> EtOK  $\rightarrow$  EtO<sup>-</sup> + K<sup>+</sup> Me<sub>4</sub>NBr  $\rightarrow$  Me<sub>4</sub>N<sup>+</sup> + Br<sup>-</sup> glyme|LiFI  $\rightarrow$  Li<sup>+</sup>|glyme|FI<sup>-</sup> Li2-C<sub>6</sub>H<sub>13</sub>FI  $\rightarrow$  Li<sup>+</sup>|MeTHF|2 CoCl<sub>2</sub>  $\rightarrow$  Co<sup>2+</sup> + 2CI<sup>-</sup>  $\begin{array}{ll} \text{CoCl}_3^- & \text{CoCl}_2 + \text{Cl}^- \\ \text{CoBr}_3^- & \text{CoBr}_2 + \text{Br}^- \\ \text{NiCl}_6^{4--} \cdot \text{NiCl}_4^{2-} + 2\text{Cl}^- \end{array}$  $CaCO_{3(s)} \rightarrow Ca^{2+} + CO_3^{2-}$ LIFI → LI\* | THP | FI− LIFI → LI\* | MeTHF | FI− LIFI → LI\* | glyme | FI− LIFI → glyme | LIFI  $CoBr_2 \rightarrow Co^{2+} + 2Br^-$ NaFI → Na<sup>+</sup> (THF | FI <sup>-</sup> NaFI→ Na†|DME|FI-LiFI → Li†|THF|FI-287 288 290 291 292 293 294 295 295 297 298 299 289

| TABLE | TABLE V (Continued)                                  |                                         |                  |              |          |                                                        |     |         |
|-------|------------------------------------------------------|-----------------------------------------|------------------|--------------|----------|--------------------------------------------------------|-----|---------|
|       |                                                      |                                         |                  |              | No.      |                                                        |     |         |
| 2     | Reartion                                             | Solvent                                 | J <sub>o</sub> L | P,           | 5 × ₹    | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> (a) (b) | Bef | Remarks |
| 9   9 | ווכמכוונטו                                           | 0 1                                     | : .              | 10           | r data   |                                                        |     |         |
| 333   | "-(HOOOH) ← HOOOH?                                   | 2 C                                     | 30               | 5.9          | , ω      | -14                                                    | 303 |         |
| 305   | 2MeCOOH → (MeCOOH), "                                | 0°H                                     | 98               | 5.9          | æ        | -13                                                    | 303 |         |
| 336   | ZWCCCCI (WCCCCI)Z<br>2EFCOOH → (EFCOOH) <sup>2</sup> | 0°H                                     | 30               | 5.9          | 89       | -8.8                                                   | 303 |         |
| 337   | $2PrCOOH \rightarrow (PrCOOH)_2^{u}$                 | H <sub>2</sub> O                        | 30               | 5.9          | 80       | -6.2                                                   | 303 |         |
| 338   | PhoH + Q PhoHQ                                       | C <sub>6</sub> H <sub>14</sub>          | 30               | 1.5          | 4        | -3.2                                                   | 346 |         |
|       | ]<br>{<br>5.                                         |                                         |                  |              |          |                                                        |     |         |
| 339   | 0+ OOO - CIC                                         | CH <sub>2</sub> Cl <sub>2</sub>         | 30               | 6.1          | 5        | 9                                                      | 347 |         |
|       | Ĭ                                                    |                                         |                  |              |          |                                                        |     |         |
|       | 0 0                                                  |                                         |                  |              |          |                                                        |     |         |
| 340   | 0 + (OO) → CIC                                       | CH <sub>2</sub> Cl <sub>2</sub>         | 25               | 6.1          | 2        | 5                                                      | 347 |         |
|       |                                                      |                                         |                  |              |          |                                                        |     |         |
|       |                                                      |                                         |                  |              | ,        |                                                        |     |         |
| 341   | $0 \longrightarrow 0 + (\bigcirc) \longrightarrow 0$ | Me-c-<br>C <sub>e</sub> H <sub>3</sub>  | 30               | <b>4</b> .1  | 4        | -11                                                    | 347 |         |
|       | מ כ                                                  |                                         | í                |              | •        | ٥                                                      | 777 |         |
| 342   |                                                      | Me-c-<br>C <sub>6</sub> H <sub>11</sub> | 20               | <del>-</del> | <b>†</b> | o                                                      | Ì,  |         |
|       | N <sup>2</sup> O                                     |                                         |                  |              |          |                                                        |     |         |
| 343   | Mo. + Me. → CTC                                      | Me-c-                                   | 30               | 4.1          | 4        | -10                                                    | 347 |         |
| 2     |                                                      | C <sub>6</sub> H <sub>11</sub>          |                  |              |          |                                                        |     |         |
|       | $O_2N$                                               | 2                                       |                  | •            | •        | Ç                                                      | 247 |         |
| 344   |                                                      | Me-c-<br>C <sub>6</sub> H <sub>11</sub> | 04               | 4.1          | 4        | 0                                                      | 347 |         |
|       | NEO                                                  |                                         |                  |              |          |                                                        |     |         |
| 345   | NO <sub>2</sub> + OOO → CTC                          | CH <sub>2</sub> Cl <sub>2</sub>         | 25               | 6.1          | 5        | -3                                                     | 347 |         |
|       |                                                      |                                         |                  |              |          |                                                        |     |         |
|       | ₹. ₹.<br>0                                           |                                         |                  |              |          |                                                        |     |         |
| 346   |                                                      | CH <sub>2</sub> Cl <sub>2</sub>         | 30               | 4.1          | 4        | -5                                                     | 347 |         |
|       | N <sup>2</sup> O                                     |                                         |                  |              |          |                                                        |     |         |
| 347   |                                                      | Me-⊖                                    | 30               | 4.1          | 4        | -5                                                     | 347 |         |

| 348  | 348  | 347                             | 347                                     | 348  | 348                | 348<br>347<br>349                                            | 349   | 350  | 347                             | 350   | 347                             | 351   | 351   | 351   |
|------|------|---------------------------------|-----------------------------------------|------|--------------------|--------------------------------------------------------------|-------|------|---------------------------------|-------|---------------------------------|-------|-------|-------|
|      |      |                                 |                                         |      |                    |                                                              |       |      |                                 |       |                                 | -46.1 | -48.5 | -49.0 |
| 0    | 0    | <b>8</b>                        | -12                                     | 0    | +16                | +17<br>-3<br>-3.4                                            | -4.9  | -7.1 | -12                             | -14.1 | 4-                              |       |       |       |
| 'n   | က    | က                               | 4                                       | 5    | 5                  | ນວນ                                                          | 2     | LO . | S.                              | 5     | S                               |       |       |       |
| ო    | က    | <b>4</b> .                      | 1.4                                     | ဗ    | က                  | 3<br>6.1<br>1.5                                              | 1.5   | 1.4  | 6.1                             | 1.4   | 6.1                             |       |       |       |
| 25   | 30   | 30                              | 30                                      | 30   | 30                 | 30<br>25                                                     | 25    | 25   | 30                              | 25    | 30                              | 25    | 25    | 25    |
| МеОН | МеОН | CH <sub>2</sub> Cl <sub>2</sub> | Me-c-<br>C <sub>6</sub> H <sub>11</sub> | MeCN | Me <sub>2</sub> CO | FBuOH<br>CH <sub>2</sub> CL <sub>2</sub><br>CCI <sub>4</sub> | , too | CCI4 | CH <sub>2</sub> Cl <sub>2</sub> | CCI4  | CH <sub>2</sub> Cl <sub>2</sub> | МеОН  | МеОН  | MeOH  |

| Continued |  |
|-----------|--|
| >         |  |
| щ         |  |
| 9         |  |
| 2         |  |

| TABLE V    | TABLE V (Continued)                                                                                                                                                                                               |                                                                                        |       |       | ,         |                                                |              |             | :                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------|-------|-----------|------------------------------------------------|--------------|-------------|-----------------------------------------|
|            |                                                                                                                                                                                                                   |                                                                                        |       | ď     | ος φ<br>× | $\Delta V$ , cm <sup>3</sup> /mol <sup>b</sup> | 9 =          |             |                                         |
| No.        | Reaction                                                                                                                                                                                                          | Solvent                                                                                | r, °c | kbars | data      | (a)                                            | (Q)          | Ref         | Remarks                                 |
|            | 1                                                                                                                                                                                                                 | ;                                                                                      | ;     |       |           |                                                |              | ,<br>,      |                                         |
| 365        | + Wei + N Wei + I                                                                                                                                                                                                 | MeOH                                                                                   | £     |       |           |                                                | 0.<br> -<br> | -<br>cc     |                                         |
| 366        | $O_2N$ $\longrightarrow$ $CH_2NO_2 + HN$                                                                                                                                                                          | Mesitylene                                                                             | 30    | 1.7   | 9         | -15.9                                          |              | 172         |                                         |
|            | $\longrightarrow \left[ \begin{array}{c} O_2N & \text{CHNO}_7 \end{array} \right] \left[ \begin{array}{c} H_2N & \text{NM6}_2 \end{array} \right]^{-1}$                                                           |                                                                                        |       |       |           |                                                |              |             |                                         |
| 367        |                                                                                                                                                                                                                   | o-Xylene                                                                               | 30    | 1.7   | 9         | -21.3                                          |              | 172         |                                         |
| 368        |                                                                                                                                                                                                                   | PhCI                                                                                   | စ္က ဒ | 1.7   | 9 4       | -21.9                                          |              | 172         |                                         |
| 370        |                                                                                                                                                                                                                   | PhoMe                                                                                  | දි දි | 7.7   | 9         | -29.3                                          |              | 172         |                                         |
| 37.1       | HCHO + H <sub>2</sub> O → HCH(OH) <sub>2</sub>                                                                                                                                                                    | H <sub>2</sub> O                                                                       | 22    | 2.1   | 30        | -4.00                                          |              | 352         |                                         |
| 372        | $MeCHO + H_2O \rightarrow MeCH(OH)_2$                                                                                                                                                                             | H <sub>2</sub> 0                                                                       | 25    | 2.1   | 30        | -7.84                                          |              | 352         |                                         |
| 373        | $EtCHO + H_2O \rightarrow EtCH(OH)_2$                                                                                                                                                                             | 5,<br>0,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1, | 25    | 2.1   | e 8       | -12.25                                         |              | 352         |                                         |
| 3/4        | PCHO + H <sub>2</sub> O → PrCH(OH) <sub>2</sub>                                                                                                                                                                   | D 0                                                                                    | 5.5   | 2.5   | 9 6       | - 12.45<br>- 11.06                             |              | 352         |                                         |
| 376<br>376 | BUCHO + H <sub>2</sub> O → BUCHOH <sub>2</sub> FPICHO + H <sub>2</sub> O → FPICHOH <sub>2</sub>                                                                                                                   | ,<br>,<br>,                                                                            | 52    | 2 2.1 | 8 8       | -11.30<br>-13.12                               |              | 352         |                                         |
| 377        | t-BuCHO + H <sub>2</sub> O → t-BuCH(OH) <sub>2</sub>                                                                                                                                                              | H <sub>2</sub> 0                                                                       | 25    | 2.1   | 30        | -11.77                                         |              | 352         |                                         |
| 378        | $dHOCH_2CH(OH)CHO + H_2O \rightarrow dHOCH_2CH(OH)CH(OH)_2$                                                                                                                                                       | H <sub>2</sub> O                                                                       | 25    | 2.1   | 30        | -1.54                                          |              | 352         |                                         |
| 379        | MeCOCOMe + H <sub>2</sub> O → MeCOC(OH) <sub>2</sub> Me                                                                                                                                                           | H <sub>2</sub> 0                                                                       | 25    | 2.1   | 90        | 110<br>111                                     |              | 352         |                                         |
| 380        | MeCHO + HSCH,CH,OH → MeCH(OH)SCH,CH,OH                                                                                                                                                                            | H,0                                                                                    | 52    | 2.1   | 30        | -14.00                                         |              | 352         |                                         |
| 381        | EtCHO + 2MeOH $\rightarrow$ EtCH(OMe) <sub>2</sub> + H <sub>2</sub> O                                                                                                                                             | MeOH                                                                                   | 25    | 2.1   | 9         | -4.6                                           |              | 353         |                                         |
| 382        | PhCHO + 2MeOH → PhCH(OMe) <sub>2</sub> + H <sub>2</sub> O                                                                                                                                                         | МеОН                                                                                   | 25    | 2.1   | 2         | -17.5                                          |              | 353         |                                         |
| 383        | $\bigcirc = 0 + 2 \text{MeOH} \longrightarrow \bigcirc $ | МеОН                                                                                   | 25    | 2.1   | 9         | -12.5                                          |              | 353         |                                         |
| 384        | + MeOH → PhC(NH)OMe                                                                                                                                                                                               | Neat                                                                                   | 110   | 8.6   | o         | -17.9                                          |              | 354         |                                         |
| 385        | -000c + H <sub>2</sub> O → 00CCH <sub>2</sub> CH(OH)C0O-                                                                                                                                                          | H <sub>2</sub> 0                                                                       | RI    | 2     | က         | ∞-10 v                                         |              | 355 0.0     | 0.05 M phosphate buffer,                |
| 386        | CBM " + I" → CBMI                                                                                                                                                                                                 | H <sub>2</sub> 0                                                                       | 25    | 1.4   | 5         | -5.8                                           |              | = η 280 μ = | $\mu = 0.2 \mathrm{M} (\mathrm{KNO_3})$ |
| 387        |                                                                                                                                                                                                                   | CS <sub>2</sub>                                                                        | ∞20   | 0     |           | -1.87                                          |              | 356         |                                         |
|            | —ō                                                                                                                                                                                                                |                                                                                        |       |       |           |                                                |              |             |                                         |

|                 | 356                                                                                                                                                | 357  | 357             | 358                                                                       | 360  | 360  | 360                  | 360                              | 360                              | 360                                            | 360  | 360                  | 360                              | 360                   | 361  | 361  | 361  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|---------------------------------------------------------------------------|------|------|----------------------|----------------------------------|----------------------------------|------------------------------------------------|------|----------------------|----------------------------------|-----------------------|------|------|------|--|
| -2.8            | -3.8                                                                                                                                               | -3.8 | -1.8            | 0                                                                         | +3   | +3   | <del>-</del>         | 0                                | -0.5                             | +12                                            | 0    | ī                    | +7                               | +5                    | +4.7 | +4.7 | +4.7 |  |
|                 |                                                                                                                                                    | 13   |                 | 9                                                                         | 4    | 4    | 4                    | 4                                | 4                                | 4                                              | 4    | 4                    | 4                                | 4                     |      | 4    | 9    |  |
| 01              | 10                                                                                                                                                 | 4.2  | 7               | 20                                                                        | က    | ෆ    | က                    | က                                | က                                | က                                              | က    | ო                    | က                                | က                     | 0.35 | 0.35 | 0.35 |  |
| ~ 50            | <i>~</i> 50                                                                                                                                        | ~ 45 | ≃45             | 200                                                                       | 20   | 50   | 20                   | 20                               | 20                               | 20                                             | 20   | 20                   | 20                               | 20                    | 17   | 63   | 116  |  |
| CS <sub>2</sub> | CS <sub>2</sub>                                                                                                                                    | Neat | CS <sub>2</sub> | Н <sub>2</sub> О                                                          | MeOH | EtOH | Me <sub>2</sub> CHOH | P-C <sub>6</sub> H <sub>14</sub> | n-C <sub>7</sub> H <sub>16</sub> | МеОН                                           | EtOH | Me <sub>2</sub> CHOH | P-C <sub>6</sub> H <sub>14</sub> | $n$ -C $_7$ H $_{16}$ | Neat | Neat | Neat |  |
| 388 CI          | 389 Br $\rightarrow$ | 3900 | 391             | 392 $CaC^{16}O_{34s} + H_2^{18}O \rightarrow CaC^{18}O_{34s} + H_2^{16}O$ |      |      | 395                  | 396                              | 397                              | 398 MeCOCH <sub>2</sub> COMe → MeCOCH==C(OH)Me | 399  | 400                  | 401                              | 402                   | 403  | 404  | 405  |  |

 $^a$  Abbreviations: CTC, charge-transfer complex; RT = room temperature; DME,  $\rm H_3COCH_2CH_2OCH_3$ ; THP, tetrahydropyran; glyme,  $\rm H_3CO(CH_2CH_2O)_3CH_3$ ; FT $^-$ , 9-fluorenyl; TCNE, tetracyanoethylene; pada and mu, see footnote a in Table IV.  $^b$  Values in (a) column derived from pressure effect on equilibrium constant; values in (b) column derived from molar volumes of reactant(s) and product(s) or measured dilatometrically.  $^c$  This phenol exists in water mainly in the form of 4-benzoquinone monoxime.  $^d$  Calculated from  $\Delta V (=+13.3$  cm³/mol) for 2-hydroxy-3-[(4-nitrophenyl)azo]benzoic acid + OH $^-$  and for  $\rm H_2O \rightarrow \rm H^+ + OH^-$ .  $^c$  Calculated from  $\Delta V (=-29.07$  cm³/mol) for NH $_3 + \rm H_2O \rightarrow \rm NH_4^+ OH^-$  and for  $\rm H_2O \rightarrow \rm H^+ + OH^-$ .  $^c$  Partial molar volume of the volume of the bromide from ref 314.  $^g$  Partial molar volume of the chloride from ref 316.  $^r$  Molecular weight ca. 4000.  $^r$  For 1 mol of H $^+$ .  $^r$  Calculated from  $\Delta V$ 

(= $-26.49 \text{ cm}^3/\text{mol})$  for PhNH<sub>2</sub> + H<sub>2</sub>O · PhNH<sub>3</sub> + OH<sup>-</sup> and for H<sub>2</sub>O · > H<sup>+</sup> + OH<sup>-</sup>. I Estimated from the acid-catalyzed hydrolysis rate constant of *N-tert-*butylacetamide.  $^m$  Calculated from the apparent molal volume of the salt and semiempirically estimated molal volume of the completely dissociated salt.  $^n$  See ref 326 for semiempirical calculations.  $^o$  Calculated from  $\Delta V (= +3 \text{ cm}^3/\text{mol})$  for FeOH<sup>2+</sup> + H<sup>+</sup> · > Fe<sup>3+</sup> + H<sub>2</sub>O by assuming  $\Delta V$  for ionization of water is  $-21 \text{ cm}^3/\text{mol}$ .  $^p$  Calculated by the present authors from the association constants at 1500 and 1000 bars assuming in K = a + bP.  $^q$  Tight and loose ion-pair equilibrium.  $^r$  Tight ion-pair and externally triglyme-complexed tight ion-pair equilibrium.  $^s$   $\alpha$ -Picolinium chloride (59.9 mol%) + ethanolaminium chloride (40.1 mol%).  $^t$  SrSO<sub>4</sub> is probably the trihydrate.  $^u$  Dimer.  $^v$  Estimated by the present authors.

increases. There is at present not a good rationale for this effect. Once again we see that the volume changes involved in multicharged ions are larger, the more so the closer the charges are together. The imidazolium ion represents once again a case of a charge delocalized and not efficiently solvated, and hence a volume decrease occurs upon proton transfer to water. The 2,6-pyridines show no regular trend until *tert*-butyl substitution is considered: the discontinuity found there was attributed<sup>322</sup> to the impossibility then arising in the formation of N–H hydrogen bonds to the solvent. *N-tert*-Butylacetamide has a large negative volume change associated with deprotonation; <sup>199</sup> in this case the rationale is that amides have pronounced zwitterionic character which is lost upon protonation of the nitrogen atom.

# F. Ion-Pair Equilibria and Inorganic Reaction Volumes (Entries 223–333)

In the successive reaction stages:

solid 

ionic aggregates 

tight ion-pairs 

ionic aggregates 

ionic

electrostriction should increase to the right and pressure should shift all these equilibria in that direction. However, it is difficult to say by how much. Thus, solids are notoriously hard to classify as covalent or ionic, aggregates are undefined as to the size of the clusters, and ion pairs are structurally not as well defined as the words intimate, solvent-separated, and ion would suggest. Add to this a fair degree of experimental difficulty and variety, and we have the ingredients of much confusion and disagreement.

Millero<sup>323</sup> has determined the volume change involved in the dissociation of ion pairs of rubidium and thallous nitrate. This was done by measuring densities of dilute solutions as a function of concentration, and by comparing the partial volumes with the estimated partial volumes of the free ions. He explains the difference between the two salts as possibly due to a contact ion pair in the thallium case vs. a solvent-separated pair with rubidium.

The very large value for sodium borate was attributed<sup>297</sup> to the binding of water, by what is apparently really the reaction

$$H_2O + Na^+, H_2BO_3^- \Rightarrow Na^+ + B(OH)_4^-$$

In the next several cases of ion-pair dissociation, studied mostly as a pressure effect on electrical conductance,  $\Delta V$  tends to be -8 to  $-10~{\rm cm^3/mol}$ , and the one rather different result of  $-25~{\rm cm^3/mol}$  for CaSO4 was ascribed by Millero  $^{325}$  to tight ion-pair character in this case; however, there are also some results by Osugi  $^{324}$  showing this salt to be more or less unexceptional.

The copper(II) malonate and tartrate complexes show large negative volume changes upon dissociation that require the assumption of largely covalent character. The effect is somewhat smaller in highly concentrated urea solutions since this solute is known to break down the structure of water by competing with it in H-bond formation. Among the remaining observations of ion-pair behavior in water, there are several which are not easily accounted for. Thus, it is not clear why CeCl<sup>2+</sup> and CeOOCEt<sup>2+</sup> have contractions of -0.8 and  $-23.6~{\rm cm}^3/{\rm mol}$ , respectively.

When we turn to nonaqueous solutions, the effects become larger as the Drude–Nernst equation requires. Particularly interesting in this group is the tight–loose equilibrium of several ion pairs in ethereal solvents. Szwarc and Claesson  $^{336-338}$  have found that alkali metal fluorenides are subject to contractions of 7 to 23 cm³/mol in the loosening process. These species have UV spectra which are themselves pressure dependent, and hence their use to evaluate  $\Delta \, V$  is not without hazards;  $^{339}$  however, a similar result has been obtained by means of ESR in the

sodium naphthalene ion pair ( $-15 \, \mathrm{cm^3/mol}$  in THF at 0 °C).<sup>57</sup> A conductance method for some quaternary salts in acetone has given<sup>340</sup> values of about  $-15 \, \mathrm{to} -25 \, \mathrm{cm^3/mol}$ .

It should be expected that complete ionization in nonaqueous media should then be characterized by extremely large contractions, and there is evidence that this is  $\rm so.^{341}$  Kitamura has deduced volume decreases of several hundred cm³/mol in alcoholic media when  $\rm CoCl_2$  ionizes; this result was obtained from conductance increases under pressure. Relaxation measurements of solutions of tetra-n-butylammonium picrate in ether at 25  $^{\rm o}$ C (five measurements, over a 400-bar range) have led to a result of -125 cm³/mol in that case.

The solubility of several sparingly soluble salts has been examined as a function of pressure,  $^{344}$  and large volume decreases were found. Corrections were made for the hydrolysis of the anions. The  $\Delta\,V^{\rm o}$  values were, in fact, in some cases not as large as listings of ionic partial volumes suggested, and the authors felt that some of the salts may form a hydrated surface under pressure, so that the equilibrium equation is accordingly altered.

Dimerization of acids has a negative reaction volume as might be expected from bond formation processes.  $^{303}$  The reaction presumably involves the formation of several extra hydrogen bonds; for each such bond, a volume change of  $-4 \, \text{cm}^3/\text{mol}$  is expected (note, for example, the volume change in the complexation of phenol by p-dioxane).

Charge-transfer complexation has been studied extensively by Ewald. He finds an average of  $-7 \, \mathrm{cm^3/mol}$ , if the donor and acceptor molecules are themselves neutral. Since this value applies in nonpolar solvents, we must attribute it primarily to a change in separation rather than to dipole development; in other words, there is not much charge transfer! When one of the members is charged, however, the effect of transfer is observable; complexation then, in fact, means delocalization, and the pressure effect is diminished to the vanishing point. When both members are charged (oppositely), neutralization occurs, and the reaction volume becomes large and positive.

The reaction volume in pyridine Menshutkin reactions has been mentioned earlier (in comparison with the activation volumes), or as has the proton transfer from  $\alpha$ , p-dinitrotoluene to sym-tetramethylguanidine.

The hydration of carbonyl functions reduces the volume by amounts in excess of 10 cm³/mol; clearly, the process does not diminish the ability of the hydroxy groups to participate in H-bonding. Interestingly, the two smallest members have sharply reduced reaction volumes. The same anomaly was observed in the case of the ionization volumes of carboxylic acids.

The conformational equilibria involving halogenated cyclohexanes and ethanes are all in favor of the more crowded conformers by small amounts. There are no instances as yet of pressure effects on isotopic exchange equilibria, nor are there likely to be many; atomic loccations in molecules are virtually independent of the isotopic mass. Even such substances as  $\rm H_2O$  and  $\rm D_2O$  have almost identical molar volumes. On the other hand, there are some examples of small changes in steric effects due to isotopic substitution;  $^{359}$  these have been attributed to small differences in the amplitude of the zero-point vibration. Conceivably there may be small differences in volume in these instances as well.

Osugi<sup>360</sup> and Heidberg<sup>361</sup> have reported pressure effects on some keto-enol equilibria, by means of UV and NMR, respectively. Generally the values, in agreement with earlier ones (using more tedious chemical analysis),<sup>362</sup> are small and positive, roughly in agreement with parachor-based predictions.

### VI. Photochemistry and Related Processes

Mechanistic investigations in photochemistry have become fashionable in recent years, and some high-pressure work has been reported as well. There are a number of special experimental problems in this, however, and the interpretation of observed effects is not always straightforward. We begin this section therefore with some general remarks.

First of all, while the literature now contains several photochemical "activation volumes", these results do not fit the simple definitions applicable in thermal reactions. The pressure effects may, in fact, be describable by a single number, but it seems best to us not to call this the activation volume; perhaps pseudoactivation volume is suitable.

By definition, the process begins with the molecular absorption of a photon.363 Since the speed of light exceeds the velocity of molecules, or even the fastest moving parts of vibrating molecules by several orders of magnitude, one may assume that the absorption process does not involve significant nuclear displacements; the volume should not change during this part of the reaction (Franck-Condon principle). This does not mean that absorption is pressure independent; quite to the contrary, examples of (usually fairly small) pressure effects on spectra abound in the literature.364 However, these effects are due to pressure-induced changes in the solvation of the molecule, and perhaps to minute distortions; in any case, they are certainly not due to any volume changes in the absorption process itself. In any case, any quantitative work which seeks to unravel true activation processes in the individual steps of a photochemical reaction must surely include measurements of the effect of pressure on the quantum yield and energy of absorption, i.e., on the spectrum. After the absorption, the molecule will assume its new shape, relax vibrationally, and reequilibrate with surrounding molecules. It will thereafter have a new partial volume; as yet this quantity is not yet known in even a single case, but since both its shape and dipole will normally have changed, it may be more than trivially different from that of the ground state.

The excited singlet is one of several possible branch points in the overall process. Thus, it may simply undergo radiationless decay, by transferring its excess energy into some ground-state vibrational mode (internal conversion). It is usually not clear what role surrounding molecules have in this process, and hence what effect pressure is likely to have on it. Alternatively, the singlet may fluoresce. Since the simple decay is usually very fast, fluorescence (or any other competing process, for that matter) must be fast also if it is to compete effectively; the time scale is of the order of 10<sup>-8</sup> s or so. The fluorescence process, if it is spontaneous, is subject to exactly the same considerations as is the absorption process; i.e., there is no change in volume during emission, but both intensity and energy (wave length) may be pressure dependent. After emission, the hot ground state then quickly reestablishes its initial geometry and surroundings. One of the complications arising in fluorescence is that it may be (in part) induced by another molecule, the so-called quencher. Since the quenching process must be fast, we are dealing with a bimolecular reaction which will often be diffusion controlled. Such reactions are obviously retarded by pressure; the pressure dependence of the rate in such cases should parallel the viscosity dependence.

Intersystem crossing to the lowest triplet state is another possible fate of the excited singlet, but the pressure dependence of this process is difficult to predict. Lastly a chemical reaction may occur to give new products, almost always in their (hot) ground states. The pressure effect for these reactions may be interpretable simply in terms of their volume profiles, with the excited state serving as the initial state. Since one ordinarily does not know the absolute rate constant, the best that can be done is to measure the effect of pressure on the quantum yield, but  $\phi$  is usually a complex function of several rate constants and hence not readily interpretable in terms of activation volumes. Absolute rate constants for chemical conversion of excited states can be determined by means of single photon-counting techniques, but these have not yet been applied with sufficient accuracy to consider adaptation to high-pressure apparatus.

If crossing to the triplet state does occur, after cooling has progressed to the vibrationally lowest level, the same possibilities of radiationless decay, emission (phosphorescence), energy transfer to another molecule (sensitization), or chemical reaction present themselves. They differ from those of the singlet in that the element of spin inversion necessary for return to the ground state leaves the triplet a longer lived species; 1 ms or so lifetime is guite common, and hence slower processes can compete. This is an important consideration because one of the problems to consider in studies of pressure effects on photochemical reactions is that if the reactions are exceedingly fast and hence the barriers very low, the formalism of the absolute rate theory may not be applicable. If the reactant excited state can get over the barrier on the first few tries, so to speak, a condition central to the derivation of the Eyring equation is not fulfilled. This is not to say that no pressure effects will occur, or that these effects will not resemble those observed in slower reactions, but they cannot be confidently related to differences in partial volume between reactant and activated complex.

To continue this list of woes, there is a general lack of information about elementary photoprocesses that is usually taken for granted in thermal reactions. For example, it is not known in general how closely the reaction partners must approach in quenching or sensitization processes. They seem only modestly sensitive to steric factors<sup>365</sup> and hence very close approach is not needed, but nothing more quantitative is known. And finally, there are still some experimental problems to be tackled as well. The weakness of window materials means that the vessel apertures are generally small, usually about 5 mm or so. Internal actinometers cannot be used until their pressure sensitivity has been determined. Most optical cells that have been used to date succeed in exposing only a small fraction of the solution to the light traversing the pressure vessel, so that uncertainties arise (due to pressure inhibited diffusion) when yields are considered: diffusion of reactant molecules into the irradiated zone plays a role, and under pressure, an increasingly adverse one. This factor alone casts doubts on much of the work reported so far. Clearly, the high-pressure photochemist has his work cut out for him! Nevertheless, some beginnings have been made, and the rest of this section is devoted to a review of these contributions.

An all-quartz cell is now available 366 so that the errors and uncertainties due to contacts of the solution of interest with plastic and metal parts or mercury bridges can be avoided. It is essentially a quartz syringe, with a quartz window seal at each end. It makes an economic use of the cylindrical space usually available in high-pressure vessels, and since its length is the only dimension that varies with pressure, compressibility corrections are obviated.

Ewald<sup>367</sup> has studied the fluorescence of anthracene under pressure, and learned that the quenching by carbon tetrabromide is inhibited in a way which is just opposite to the pressure-induced increase in solvent viscosity. Variations in the quenching efficiency with solvent viscosity at atmospheric pressure are also observed, and the conclusion is clear: fluorescence quenching is a diffusion-controlled process in this case. The pressure dependence may therefore be used as a more convincing, if less accessible, method to show that a given process is diffusion controlled.

Metcalf<sup>368</sup> reached a similar conclusion on the same grounds regarding the fluorescence of 9,10-diphenylanthracene and its quenching by oxygen; on the other hand, quenching by carbon tetrachloride in this instance was virtually unaffected by pressure, and this process is evidently not diffusion limited.

A still more complicated situation was analyzed by Weller. 369 Pyrene has a fluorescence band which increases in intensity with concentration up to a maximum, but with further concentration increases it gives way to a new band which is clearly due to an excimer. The excimer emission is inhibited by pressure in such a way as to reveal the diffusion control of excimer formation. When excimer fluorescence of benz[1,2] anthracene is examined, one finds that it increases with pressure at low pressures, reaches a maximum at 2–3 kbars, and then declines. The authors interpreted the initial increase as due to equilibrium excimer formation, which has a reaction volume of  $-6~{\rm cm^3/mol}$  associated with it, and they assume that at higher pressures diffusion control begins to limit the rate. It is interesting that the singlet forms a charge-transfer complex with a volume decrease similar to that of ordinary ground-state acceptors. Perhaps equally interesting,  $^{370}$  the effects of pH and of pressure on the fluorescence spectrum of acridine in water has revealed that  $\Delta \textit{V}_{\rm i}$  for excited acridine is  $-25~{\rm cm^3/mol}$ , similar to that of ground-state amines; however,  $\Delta \textit{V}_{\rm i}$  for  $\beta$ -naphthol is only  $-6~{\rm cm^3/mol}$ , indicating that this phenol must be highly polarized in the excited state

Osugi<sup>372</sup> studied the photochemistry of anthracene and 9-methylanthracene in *n*-hexane. He finds that the photodimerization is retarded in a way approximately expected for diffusion control. Tanaka<sup>373</sup> found that the pressure effect on the fluorescence quantum yield of anthracene is remarkably dependent on substituents: steep increases occur with 9-alkyl groups, but not with anthracene itself. It was considered that the fluorescence rate is unaffected, and that effects are due to changes in intersystem crossing. The Kyoto group has also reported a comparison of the pressure effects on the thermal and photodissociations of azobisisobutyronitrile, and found only a slight difference in pressure effect.<sup>374</sup>

Other work reported in this area includes work by Neuman, 375 who has compared the behavior of diradicals generated thermally and photolytically, a study by Kelm,82 who made use of the chemiluminescence generated in the decomposition of oxetanes to follow that reaction, one by Hamann who found that pressure promotes the photodimerization of methyl 3-methoxy-2naphthoate, 376 and two studies carried out in Stony Brook to compare cycloadditions carried out photochemically with those done thermally. The well-known pressure-bestowed advantage of [4n + 2] cycloadditions becomes that of the 4n analogs in the photoreactions. Thus, pressure does not favor photosubstitution over [2+2] cycloaddition in the irradiation of mixtures of naphthalene and acrylonitrile even though the former reaction has the volume advantage of an ionic transition state;377 in a direct comparison of the allowed and forbidden photocycloadditions, the [4 + 4] cycloaddition of 9-cyanoanthracene to cycloheptatriene was found to be promoted by pressure over the [4 + 2] mode. 378 An intriguing observation by Mataga, a pressure-induced and reversible formation of a photoproduct of pyrene in oxygenated alcohol, is as yet unexplained. 379

The work by Schindewolf on solvated electrons under pressure, and by Hentz et al. on  $\gamma$  radiolysis under pressure has provided us with some additional insights in this area. Schindewolf reports  $^{380}$  that electrons in ammonia (from dissolved sodium metal) have an optical spectrum quite sensitive to pressure (blue shift of  $\sim\!1$  Å/atm) and temperature (red shift of  $\sim\!25$  Å/°C); from these data he shows that ammoniated electrons have a compressibility and thermal expansion considerably in excess of those of ammonia itself. The equilibrium constant for the process

$$H_2 + KNH_2 \rightleftharpoons NH_3 + K^+ + e^-$$

at -33 °C under pressure was evaluated from the intensities;  $\Delta V$  was found to be about +63 cm³/mol. By combining this information with partial volume data of the other species in the equation, Schindewolf³8¹ was able to appraise  $V_{\rm e}$ - as 84 cm³/mol; thus the electron is in a cavity of 3-Å radius. Virtually the same information applies to the spin-compensated electron pairs in ammonia, studied at higher concentration by ESR.³8² Interestingly, the effect of pressure on the optical spectra of electrons in water and simple alcohols (obtained by  $\gamma$ -pulse

radiolysis techniques) is much less drastic;<sup>383</sup> in that medium, electrons apparently occupy much smaller cavities.

The rates of solvated electron-mediated processes are slow enough to be measurable, and this has been done now in many cases under pressure by the groups of Freeman, and of Hentz and Farhataziz. It has been learned that the reaction

$$e^- + ROH \rightarrow RO^- + \dot{H}$$

has an activation volume of about  $-20~\rm cm^3/mol$ , due perhaps to the collapse of the cavity; for the ''slow'' reaction with aromatic hydrocarbons to give the radical anions,  $\Delta V^{\ddagger} \approx -6~\rm cm^3/mol$ . For most other species, reaction is rapid and probably diffusion controlled; the activation volumes are positive. <sup>384</sup> The reaction:

$$Fe^{2+} + H \rightarrow FeH^{2+}$$

which is probably the first step in

$$Fe^{2+} + H + H^{+} \rightarrow Fe^{3+} + H_{2}$$

has an activation volume of  $-9~\rm cm^3/mol;^{385}$  a value of  $-16.8~\rm cm^3/mol$  applies to  $^{386}$ 

$$e^- + HCO_3^- \xrightarrow{H_2O} H + CO_3^{2-}$$

The reactions<sup>387</sup>

$$e^- + H_2O \rightarrow H + OH^-$$
  
 $e^- + H_2O^+ \rightarrow H + H_2O$ 

have activation volumes of -14 and about 0 cm³/mol, respectively. All these results have been deduced from the quantum yields in pulse radiolyses of compressed aqueous solutions. While most of them rest on certain assumptions (such as values for  $\overline{V}(H^+)$ ,  $\eta(H_2O)$ , or f(p), etc), it is clear from the results that  $\overline{V}_e$  is relatively small and the electron cavity in water is tiny compared to that in ammonia. The most recent estimate by Hentz³88 is that the radius is about 0.7-1.3 Å.

To conclude this section, it is clear that the combination of irradiative processes and high pressure offers possibilities for study of both fundamental questions and applications. In the latter area, such simple experiments as pressure-induced changes in product distributions and stationary-state compositions have been reported in only few cases, even though shifts in the direction of more highly branched or crowded products seem both likely and desirable in many cases. More experience in this area is certain eventually to be helpful in more fundamental questions as well.

#### VII. Biological and Biochemical Processes

The state of the art in this area is similar to that in the photochemical area: so little is known that it is difficult to interpret the pressure effects in even the simplest experiments. There are several reasons for this. The systems of interest are often at once both aqueous and organic, and little is known about processes occurring at the interface. The molecules are large, often with unknown conformation. The volume changes in many instances seem very large on a molar basis, but in terms of volume fractions they are small. As with small molecules, volume changes may have any of several causes, but in biochemistry and biology, the background information available is usually so much poorer that it is hard to argue convincingly for any one of them. We consider here systems of increasing complexity: relatively small and well-defined molecules, polymeric substances with regularly reoccurring units, and proteins and enzymes.

Micelles have been studied under pressure in several laboratories. When an ionic substance in which one of the ions carries one or more large hydrocarbon groups is dissolved in water, the ions may congregate at some concentration to form micelles; these are globules in which the hydrocarbon residues have joined together in such a way as to leave the ionic sites in peripheral positions. A number of counterions are associated with the charged sphere, which may contain from 50 to 100 of the large ions. In hydrocarbon media inverse micelles can sometimes be observed, but these are of course of little interest in biology. If we consider large anions, the process may be represented by:

$$nA^- + (n-z)C^+ \rightleftharpoons M^{z-}$$

The concentration at which the formation of micelles begins is known as the critical micelle concentration (cmc); this can be determined in several ways, for example, by means of conductivity measurements. The effect of pressure can easily be determined, giving the volume change for the process in terms of cm<sup>3</sup>/mol of anions. Dilatometric experiments are of course also possible.

Several electrolytes have now been studied in this way, and the general result is that the volume increases substantially in the process: expansions of 5 to 10 cm<sup>3</sup>/mol anion are usually observed. Small variations occur from one case to another; for example, among *n*-alkanesulfonates,  $\Delta V$  (room temperature) is +5 cm<sup>3</sup>/mol at C<sub>8</sub>, <sup>389</sup> +8 cm<sup>3</sup>/mol at C<sub>10</sub>, <sup>390</sup> 10 cm<sup>3</sup>/mol at C<sub>12</sub>,<sup>391</sup> and 11 cm<sup>3</sup>/mol at C<sub>14</sub>;<sup>391</sup> with n-alkyltrimethylammonium bromides, similar variations hint at larger volume increases with longer chains. 389,392 Various responses of the cmc to pressures have been noticed; a maximum at some pressure is not uncommon.392

Most of the discussion of the volume increase has centered about the so-called hydrophobic interaction. When a hydrocarbon moiety is introduced in water, the water structure is locally perturbed, and the effects on thermodynamic properties are measurable. Thus, when the partial molal volumes of alcohols and amines in water are compared with the molar volumes, one finds that the latter are larger: in other words, a contraction occurs upon dissolution. Small increases furthermore occur at higher molecular weights. One may consider this the result of a molecule being transferred from a region of relatively low internal pressure to a much higher one; in any case, a fairly convincing case can be made for the proposition that micelle formation should have a positive volume contribution from this phenomenon. The difficulty is that there must be other contributions that are hard to evaluate, so that the overall result and its interpretation are only deceptively simple. The mere fact that the sign of  $\Delta V$  is right is not sufficient!

Thus, the electrostriction is subject to two effects which are potentially large. One of these is charge concentration. The survey of activation and reaction volumes repeatedly reveals that bringing together like charges causes a decrease in volume, and creating a spherical surface of more or less uniform charge density should make a large negative contribution to the volume. This is offset by association with cations. It is not clear whether the association is tight or loose, and how the hydration of the ionic sites changes in the process; these are questions that cannot now be answered. Nor is the structure of the interior of the micelles known; thus, the question arises whether it is better considered a liquid or solid, and whether the chains are extended or coiled. The volume of melting is quite large for hydrocarbons, and this contribution alone, in absolute terms, may be comparable to or larger than the observed volume change. The burial of one or more ionic sites inside the micelle would likewise have implications for the volume. Thus, even if the simple interpretation is correct and hydrophobic interactions are characterized by net volume decreases, the case has then been made only for simple saturated hydrocarbon chains, and extrapolation even to aromatic rings is hazardous.

A second major question that arises is the effect of conformational change. Even in small molecules such as dimethylformamide, a single bond rotation may have a substantial activation volume, as noted above. A related instance in a molecule of biological interest is that of No, No-dimethyladenosine; Lüdemann has studied the effect of pressure on the coalescence temperature of the methyl proton magnetic resonances; the activation volume is about + 10 cm<sup>3</sup>/mol.<sup>393</sup>

It is tempting, of course, to ascribe this result, so similar to that with simple amides, to loss of the dipole as the conformation reaches the perpendicular stage; however, for the same reason, loss of the dipole, the primary hydroxy group may lose its favorite H-bonding partner, the adenine group may change its ability to stack (see below), and so on. In high molecular weight substances, the rotation of just a few, or even one bond could conceivably bring about a fairly drastic change in shape. If such a change caused the exposure to solvent of parts of the molecule previously hidden inside, the volume change could be large, and have either sign; if polar or ionizable groups are exposed, the volume may decrease, and if hydrocarbon moieties become shielded, it may increase. In large molecules furthermore, another problem may arise, that of cooperativity, as is demonstrated by the following example.

Poly-L-proline is known in two helical forms, one containing cis amide linkages and the other trans. For certain 1-

propanol-acetic acid mixtures the two forms are in equilibrium, and  $\Delta V$  can be measured by the pressure effect on the equilibrium. This has been done by Rifkind and Applequist; 394 the effects observed could only be interpreted by assuming a high degree of cooperativity (each unit preferring another of like conformation as its neighbor). At 7 kbars the conversion of the trans form to the cis is complete. The direction is in agreement with the known fact that the cis helix is much shorter per unit proline, but the reason for the volume difference is not known. The same comment must be made about the helix-coil transitions under pressure; pressure effects have been observed in both directions (for example, poly-γ-benzyl-L-glutamate, 395 and poly-RNA and -DNA<sup>396</sup>). Protein denaturation is affected by pressure in only one way: it is always favored. The effects vary in magnitude; for ribonuclease A,  $\Delta V$  can be as low -5 cm<sup>3</sup>/ mol;<sup>397</sup> for chymotrypsinogen,  $\Delta V = -40$  cm<sup>3</sup>/mol;<sup>398</sup> for metmyoglobin, under certain conditions, 399 the volume decrease is 100 cm<sup>3</sup>/mol or more. In all of these cases, the pressureinduced denaturation is reversible.

A third special effect with molecules or biological interest is the so-called base stacking; this phenomenon may be caused by charge transfer, by bridging water H-bonded water molecules, or as a result of hydrophobic interactions. Lüdemann has deduced<sup>400</sup> from the pressure effect on the chemical shifts of 9-

methylpurine that self-association has a volume change of -4 cm<sup>3</sup>/mol, opposite to that expected from hydrophobic interactions. Sound absorption measurements under pressure have similarly yielded a volume decrease of about 7 cm<sup>3</sup>/mol for  $N^6$ , $N^9$ -dimethyladenine.<sup>401</sup> The self-association of the dyes rhodamine B and methylene blue is characterized by volume

decreases of 10.5 cm<sup>3</sup>/mol; hydrophobic interactions were consequently ruled out, and bridging water molecules favored by the authors<sup>402</sup> (however, charge concentration may have contributed).

The pressure-jump technique was used to measure the entire volume profile of the two-step reaction of bromphenol blue with  $\beta$ -lactoglobulin B. The profile is perhaps best described by the phrase that the initial state is the densest state. The expansion was ascribed<sup>403</sup> to hydrophobic interactions, but this is only one possibility. Rather complex behavior is observed in the complexation of riboflavin binding protein with flavin mononucleotide; fluorescence was used as the probe in this case. The association is characterized by a small volume decrease (3 cm<sup>3</sup>/mol); perhaps more interesting is the fact that there is a red shift in the spectrum of the protein alone which was attributed to increased exposure of the tryptophan to solvent. 404 At very high pressure the complex dissociates again and the protein is reversibly denatured with a characteristic large and negative reaction volume (-75 cm<sup>3</sup>/mol). A somewhat similar case is the association of  $\beta\text{-casein, studied}$  by Payens and Heremans  $^{405}$  by means of light scattering. They find that depolymerization occurs at low pressures (below 1.5 kbars), but above that pressure reassociation takes place: the low- and high-pressure results clearly involve different  $\beta$ -casein molecules. The change was described by the authors as a conformational one.

Related findings have been reported as pressure effects on the visible spectrum of metmyoglobin fluoride (attributed to conformational changes),<sup>406</sup> on the complexation of polyadenylic and polyuridylic acids (inhibition attributed to counterion binding),<sup>407</sup> on the rate and equilibrium constants of complexation of several nucleotides,<sup>408</sup> on the reaction of adenosine and adenosine 5'-phosphate with hydroxide and the formation of double-stranded polyriboadenylic acid,<sup>409</sup> on the unfolding of ribonuclease,<sup>410</sup> on the equilibration of the two forms of meta-rhodopsin,<sup>411</sup> on the antibody-antigen reaction,<sup>412</sup> and on the

association of E. coli ribosomes.413

The formation of chemical bonds would be expected to be characterized by a volume decrease; as an example, the binding of methionine to iron in cytochrome c is strongly promoted by pressure. <sup>414</sup> Yet this is not always the case; both positive and negative volume changes have been encountered in the binding of small molecules to the hemo- and myoglobins. Such variations may be caused by hydration and conformation changes; the magnitude is often pH dependent. <sup>415</sup> Perhaps the most important results are that oxygen binding to hemo- and myoglobin is retarded, and that of carbon monoxide is accelerated. <sup>416</sup> In one case, the cause of a positive value was identified: <sup>417</sup> the binding of carbon monoxide to ferroprotoporphyrin IX is retarded by pressure because of diffusion control, as was evident from solvent effects.

The intriguing question of the mechanism of enzyme catalysis has attracted a fair share of the attention of high-pressure investigations. Thus, Neuman has measured the rates of hydrolysis of *p*-nitrophenyl esters catalyzed by hydroxide ion, by Tris buffer, and by chymotrypsin. All these reactions are accelerated by pressure, but no startling differences between the pressure effects were noted. 418-420 Other enzyme experiments under pressure have included dextransucrase, 421 fumarase, 422 glycolytic enzymes, 423 lactate dehydrogenase, 424 lysozyme, 425 ribonuclease, 426 and liver dehydrogenase; 427 as yet, no real breakthrough has occurred in any case as a result of these experiments.

### VIII. Appendix

In this section we list items that reached our attention after the preceding sections had been completed.

In view of the increasing use of the diamond cell in the studies of liquids, it is well to call attention to a paper by Christian, <sup>428</sup> which reports that the actual pressure in the liquid sample may be vastly below the applied pressure, most of the resistance being taken up by the metal gasket.

Table VI lists a number of recently measured activation volumes.

One of the results that stands out in Table VI is that Kelm could find no difference in the activation volumes of the hydrogen and deuterium abstractions of phenols and deuterated phenols by 2,2-diphenylpicrylhydrazyl. This is not unexpected, since among stable molecules there are no known examples of significant differences in molar volume between substances that differ only isotopically; however, a difference of no less than 10 cm³/mol was reported by Isaacs for the chloranil oxidations of a pair of protio- and deuteriotriphenylmethanes. If this result stands up, it would provide a unique example of a pressure effect on an isotope effect. It is perhaps one of the strongest hints of the intervention of tunnelling in a chemical reaction as yet uncovered.

The table concludes with remarkably clear-cut results on the mechanism of solvent exchange of a number of niobium and

**TABLE VI. Activation Volumes** 

| No. | Reaction                                                                                 | Solvent | <i>τ</i> , °C | <i>P</i> ,<br>kbars | No.<br>of <i>k</i><br>data | $\Delta V^*,$ cm $^3$ /mol | Ref | Remarks |
|-----|------------------------------------------------------------------------------------------|---------|---------------|---------------------|----------------------------|----------------------------|-----|---------|
| 1   | $Me_2C(CN)N \!\!\!=\!\! NC(CN)Me_2 \to \big[Me_2C(CN)\cdotN_2\cdotC(CN)Me_2\big]_{cage}$ | PhMe    | 62.3          | 4.9                 | 5                          | +2.5                       | 429 |         |
| 2   | $Me_2C(CN)N = NC(CN)Me_2 + I_2 \rightarrow 2Me_2C(CN)I + N_2$                            | PhMe    | 62.3          | 4.9                 | 5                          | +6.0                       | 429 |         |
| 3   | 2HO-O+ O-OH + O-O                                                                        | PrOH    | 25            | 2.5                 | 5                          | +5                         | 430 |         |
| 4   | DPPH + HO                                                                                | PhMe    | 25            | 1.5                 | 7                          | -13.7                      | 431 |         |

|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Р,                                                                                          | No.<br>of <i>k</i> | Δ <b>V</b> *,                                                                                            |                                                                    |                  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|
| No.                                                                  | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T</i> , °C | kbars                                                                                       |                    | cm <sup>3</sup> /mol                                                                                     | Ref                                                                | Remarks          |
| 5                                                                    | DPPH + DO - DPPH-D + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 1.5                                                                                         | 7                  | -12.7                                                                                                    | 431                                                                |                  |
| 6                                                                    | DPPH + HO DPPH—H + ·O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 2.0                                                                                         | 9                  | -13.3                                                                                                    | 431                                                                |                  |
| 7                                                                    | DPPH + DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 1.5                                                                                         | 7                  | -13.1                                                                                                    | 431                                                                |                  |
| 8                                                                    | DPPH + HO DPPH—H + ·O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 2.0                                                                                         | 8                  | -13.1                                                                                                    | 431                                                                |                  |
| 9                                                                    | DPPH + DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 1.5                                                                                         | 7                  | -13.2                                                                                                    | 431                                                                |                  |
| 10                                                                   | DPPH + HO DPPH—H + ·O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 0.3                                                                                         | 4                  | -13.5                                                                                                    | 431                                                                |                  |
| 11                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PhMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | 1.5                                                                                         | 7                  | -11.4                                                                                                    | 431                                                                |                  |
| 12                                                                   | Ph <sub>2</sub> CN <sub>2</sub> + PhCOOH → Ph <sub>2</sub> CHOCOPh + N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bu <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.5          | 1.1                                                                                         | 6                  | -13.1                                                                                                    | 432,                                                               |                  |
| 13                                                                   | $Ph_2CN_2 + PhCOOD \rightarrow Ph_2CDOCOPh + N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bu₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26:5          | 1                                                                                           | 5                  | -12.8                                                                                                    | 433<br>432                                                         |                  |
| 14                                                                   | $(Me_2N \longrightarrow CH + O \longrightarrow CI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MeCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.5          | 2                                                                                           | 11                 | -25.5                                                                                                    | 432                                                                |                  |
| 15                                                                   | $(Me_2N - CI - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MeCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.5          | 2                                                                                           | 11                 | -35.8                                                                                                    | 432                                                                |                  |
| 16<br>17                                                             | $SnMe_4 + I_2 \rightarrow SnMe_3I + MeI$<br>$Ni(MeOH)_6^{2+} + *MeOH \rightarrow Ni(MeOH)_5*MeOH + MeOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bu <sub>2</sub> O<br>MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.1<br>34    | 1.1<br>2                                                                                    | 12                 | -50<br>+10.9                                                                                             | 434<br>435                                                         | From p<br>effect |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | $\begin{array}{l} {\sf NbCl_5 \cdot Me_2O} + {}^*{\sf Me_2O} \to {\sf NbCl_5 \cdot {}^*Me_2O} + {\sf Me_2O} \\ {\sf NbCl_5 \cdot {\sf MeCN}} + {}^*{\sf MeCN} \to {\sf NbCl_5 \cdot {}^*MeCN} + {\sf MeCN} \\ {\sf NbCl_5 \cdot {\sf MeCN}} + {}^*{t \cdot {\sf BuCN}} \to {\sf NbCl_5 \cdot {}^*({\sf MeO})Cl_2PO} + {\sf NbCl_5 \cdot {}^*({\sf MeO})Cl_2PO} + {\sf (MeO)Cl_2PO} \to {\sf NbCl_5 \cdot {}^*({\sf MeO})Cl_2PO} + {\sf (MeO)Cl_2PO} \\ {\sf NbCl_5 \cdot {\sf (Me_2N)_3PS}} + {}^*({\sf Me_2N)_3PS} \to {\sf NbCl_5 \cdot {}^*({\sf Me_2N})_3PS} + {\sf (Me_2N)_3PS} \\ {\sf NbBr_5 \cdot {\sf Me_2S}} + {}^*{\sf Me_2S} \to {\sf NbBr_5 \cdot {}^*{\sf Me_2S}} + {\sf Me_2S} \\ {\sf TaCl_5 \cdot {\sf Me_2O}} + {}^*{\sf Me_2O} \to {\sf TaCl_5 \cdot {}^*{\sf Me_2O}} + {\sf Me_2O} \\ {\sf TaCl_5 \cdot {\sf Me_2S}} + {}^*{\sf Me_2S} \to {\sf TaCl_5 \cdot {}^*{\sf Me_2S}} + {\sf Me_2S} \\ {\sf TaCl_5 \cdot {\sf Me_2Se}} + {}^*{\sf Me_2Se} \to {\sf TaCl_5 \cdot {}^*{\sf Me_2Se}} + {\sf Me_2Se} \\ {\sf TaCl_5 \cdot {\sf Me_2Te}} + {}^*{\sf Me_2Te} \to {\sf TaCl_5 \cdot {}^*{\sf Me_2Se}} + {\sf Me_2Se} \\ {\sf TaBr_5 \cdot {\sf Me_2Se}} + {}^*{\sf Me_2Se} \to {\sf TaBr_5 \cdot {}^*{\sf Me_2Se}} + {\sf Me_2Se} \\ {\sf TaBr_5 \cdot {\sf Me_2Te}} + {}^*{\sf Me_2Te} \to {\sf TaBr_5 \cdot {}^*{\sf Me_2Te}} + {\sf Me_2Te} \\ {\sf TaBr_5 \cdot {\sf Me_2Te}} + {}^*{\sf Me_2Te} \to {\sf TaBr_5 \cdot {}^*{\sf Me_2Te}} + {\sf Me_2Te} \\ \end{pmatrix}$ | CH <sub>2</sub> CI <sub>2</sub> CHCI <sub>3</sub> CHCI <sub>3</sub> CHCI <sub>3</sub> CHCI <sub>3</sub> CH <sub>2</sub> CI <sub>2</sub> |               | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                    | +28.7<br>+19.3<br>+15.2<br>+20.5<br>+19.3<br>-12.6<br>+27.8<br>-19.8<br>-18.7<br>-10.7<br>-13.6<br>-16.4 | 436<br>436<br>436<br>436<br>436<br>436<br>436<br>436<br>436<br>436 | on NMR           |

TABLE VII. Activation Volume Differences

|    | Reaction                                                                                                                                                                                                                                       | Solvent | т, °С | P,<br>kbars | No. of k data | $\delta\DeltaV^*$ cm $^3$ /mol | Ref | Remarks |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------------|---------------|--------------------------------|-----|---------|
| No |                                                                                                                                                                                                                                                | PhMe    | 62.3  | 4.9         | 5             | 0                              | 429 |         |
| 1  | $Me_2C(CN)\cdot N_2\cdot Me_2C(CN)$ $\xrightarrow{I_2} Me_2C(CN)C(CN)Me_2 + N_2$ $2Me_2C(CN)I$ $many carbon chlorination$                                                                                                                      | Neat    | 40    | 5.9         | 4             | +9.97<br>0                     | 437 |         |
| 2  | pentane or hexane + Cl <sub>2</sub> AIBN primary carbon chlorination secondary carbon chlorination  Me <sub>2</sub> CHCHMe <sub>2</sub> + Cl <sub>2</sub> AIBN Me <sub>2</sub> CHCHMeCH <sub>2</sub> CI  Me <sub>2</sub> CHCMe <sub>2</sub> CI | Neat    | 40    | 5.9         | 4             | -0.7<br>0                      | 438 |         |
| 3  | Me <sub>2</sub> CHCMe <sub>2</sub> CI                                                                                                                                                                                                          | PhCI    | 50    | 3.9         | 4             | -0.9<br>0                      | 439 | ь       |
| 7  | t-BuO· AIBN - t-BuOC! MeCOMe + Me· t-BuOH + PhCMe <sub>2</sub> CH <sub>2</sub> .                                                                                                                                                               |         |       |             |               | -10.0                          | 400 | ь       |
| 5  | t-BuO· AIBN + t-BuOCI → MeCOMe + Me·  MePh → t-BuOH + PhCH <sub>2</sub> ·                                                                                                                                                                      | PhCI    | 50    | 3.9         | 4             | 0<br>-14.0                     | 439 | -       |
| 6  | t-BuO· AIBN - t-BuOCI MeCOMe + Me·                                                                                                                                                                                                             | PhCI    | 50    | 2.0         | 3             | 0<br>14.4                      | 439 | b       |
| 7  | t-BuO· AIBN + t-BuOCI → MeCOMe + Me·<br>HeptH→ t-BuOH + s-C <sub>7</sub> H <sub>15</sub> .                                                                                                                                                     | PhCI    | 50    | 2.0         | 3             | 0<br>15.5                      | 439 | b       |
| 8  | t-BuO· AIBN + t-BuOCi → MeCOMe + Mer                                                                                                                                                                                                           | PhCI    | 50    | 2.0         | 3             | 0<br>-12.6                     | 439 | b       |
| 9  | t-BuO· AIBN - (-BuCCI) MeCOMe + Me·<br>t-BuOH + Ph₂CH·                                                                                                                                                                                         | PhCl    | 50    | 2.0         | 3             | 0<br>16.5                      | 439 | b       |
| 10 | t-BuO· AIBN - t-BuOCI → MeCOMe + Me·<br> -PrPh                                                                                                                                                                                                 | PhCI    | 50    | 2.0         | 3             | 0<br>-17.1                     | 439 | b       |
| 11 | CH <sub>2</sub> =CH-CH=CHOMe + MeOCOCHO  dl-COOMe OMe                                                                                                                                                                                          | MeOPh   | 50    | 5.9         | 2             | 0                              | 440 |         |
|    | di-COOMe                                                                                                                                                                                                                                       | ÷       |       |             |               | -0.9ª                          |     |         |
| 12 | CH <sub>2</sub> =CH-CH=CHOMe + EtOCOCHO                                                                                                                                                                                                        | MeOPh   | 50    | 5.9         | 2             | 0                              | 440 |         |
|    | OMe<br>OCOOEt<br>OMe                                                                                                                                                                                                                           |         |       |             |               | -1.1ª                          |     |         |
| 13 | CH <sub>2</sub> =CHCH= CHOMe + BuOOCCHO                                                                                                                                                                                                        | MeOPh   | 50    | 5.9         | 2             | 0                              | 440 |         |
|    | coobe<br>OEt                                                                                                                                                                                                                                   | ى       |       |             |               | -0.9 ª                         |     |         |
| 14 | CH2=CH-CH=CHOEt + MeOOCCHO                                                                                                                                                                                                                     | MeOPh   | 50    | 5.9         | 2             | 0                              | 440 |         |
|    | OEt COOM                                                                                                                                                                                                                                       | e       |       |             |               | -1,1ª                          |     |         |
| 15 | CH <sub>2</sub> =CH-CH=CHOEt + EtOOCCHO                                                                                                                                                                                                        | MeOPh   | 50    | 5.9         | 2             | 0                              | 440 |         |
|    | d/-COOE                                                                                                                                                                                                                                        | it      |       |             |               | -0.7ª                          |     |         |

#### TABLE VII (Continued)

| No. | Reaction                                |              | Solvent | τ, °C | <i>P</i> ,<br>kbars | No. of<br>k data | $\delta\Delta V^*$ cm <sup>3</sup> /mol | Ref | Remarks |
|-----|-----------------------------------------|--------------|---------|-------|---------------------|------------------|-----------------------------------------|-----|---------|
| 16  | CH <sub>2</sub> =CHCH=-CHOEt + BuOOCCHO | OEt<br>COOBu | MeOPh   | 50    | 5.9                 | 2                | 0                                       | 440 |         |
|     |                                         | OEt<br>COOBu |         |       |                     |                  | -0.7 ª                                  |     |         |

<sup>&</sup>lt;sup>a</sup> Calculated by the authors. <sup>b</sup> In the presence of trichloroethylene.

#### **TABLE VIII. Reaction Volumes**

| No. | Reaction                                    | Solvent                        | τ, °C | P, kbars | No. of K<br>data | $\Delta V$ , cm $^3$ /mol $^a$ | Ref | Remarks                                                                  |
|-----|---------------------------------------------|--------------------------------|-------|----------|------------------|--------------------------------|-----|--------------------------------------------------------------------------|
| 1   | PhMe + I <sub>2</sub> → CTC                 | Hexane                         | 25    | 2.0      | 6                | <b>-</b> 7.10                  | 442 |                                                                          |
| 2   |                                             | Hexane                         | 40    | 2.0      | 6                | -6.20                          | 442 |                                                                          |
| 3   |                                             | Hexane                         | 60    | 2.0      | 6                | -5.10                          | 442 |                                                                          |
| 4   | $2Ag + Hg_2Cl_2 \rightarrow 2Hg + 2AgCl$    | H <sub>2</sub> O               | 25    | 10.0     | 11               | -5.4                           | 443 | From electromotive force of Ag AgCl Hg <sub>2</sub> Cl <sub>2</sub>  Hg  |
| 5   | $2Ag + Hg_2Br_2 \rightarrow 2Hg + 2AgBr$    | H <sub>2</sub> O               | 25    | 10.0     | 11               | -6.0                           | 443 | From electromotive force of Ag AgBr  Hg <sub>2</sub> Br <sub>2</sub>  Hg |
| 6   | $Zn + Hg_2I_2 \rightarrow ZnI_2$<br>+ $2Hg$ | H <sub>2</sub> O               | 25    | 10.0     | 11               | +1.62                          | 444 | From electromotive force of $Zn ZnI_2  Hg_2I_2 Hg$                       |
| 7   | $Li^+$ , $Br^- \rightarrow Li^+ + Br^-$     | Me <sub>2</sub> CO             | 25    | 5        | 6                | -25                            | 445 |                                                                          |
| 8   | $Et_2O + I_2 \rightarrow CTC$               | C <sub>7</sub> H <sub>16</sub> | 25    | 3.3      | 4                | -6.7                           | 446 |                                                                          |

<sup>&</sup>lt;sup>a</sup> Derived from pressure effect on equilibrium constant. <sup>b</sup> The reaction volume is negative above 6 kbars.

tantalum complexes. Both dissociative and associative reactions are observed

Table VII lists the most recent activation volume differences. Perhaps the most worthwhile data there are Zhulin's observations on the effect of pressure on the competition between the decomposition of the tert-butoxy radical (to acetone and methyl radical) and its abstraction of hydrogen from various donors. The latter reaction has a smaller activation volume; the difference amounts to about 15 cm<sup>3</sup>/mol. In other work, Zhulin reports the trimerization of acetonitrile at 15 kbars.441

Finally, Table VIII contains among other data Ishihara's interesting result that the dissociation of lithium bromide ion pairs in acetone causes a volume diminution of 25 cm<sup>3</sup>/mol. Once again, therefore, caution is clearly necessary in the interpretation of rate data under pressure if ionic reactions in relatively nonpolar media are under study.

Acknowledgments. We acknowledge with pleasure support from the National Science Foundation for our own investigations in this area. We are indebted to Dr. K. Heremans of the Katholieke Universiteit of Leuven for calling to our attention many of the papers cited in section VII.

#### IX. References and Notes

- W. J. le Noble, Prog. Phys. Org. Chem., 5, 207 (1967).
   S. D. Hamann, Mod. Aspects Electrochem., 9, 47 (1974).
- (3) W. J. le Noble, J. Chem. Educ., 44, 729 (1967)
- (4) W. J. le Noble, Chem. Weekblad, 63, 16, 39 (1967).
  (5) H. Heydtmann in "Chemische Elementarprozesse", H. Hartmann, J. Heidberg, and G. H. Kohlmaier, Ed., Springer, New York, N.Y., 1968, p. 331
- (6) E. Whalley, Adv. Phys. Chem., 18, 205 (1967)
- G. Kohnstam, Prog. React. Kinet., 5, 335 (1970).

- (8) W. J. le Noble, High Temp. High Pressures, in press.
  (9) E. U. Franck, Ber. Bunsenges. Phys. Chem., 70, 1944 (1966).
  (10) G. Jenner, Angew. Chem., Int. Ed. Engl., 14, 137 (1975); for copolymerization, R. van der Meer, Thesis, Technische Hogeschool te Eindhoven, the Netherlands, 1977, and R. van der Meer, A. L. German, and D. Heikens, J. Polym. Sci., 15, 1765 (1977).
- (11) J. R. McCabe and C. A. Eckert, Acc. Chem. Res., 7, 251 (1974).
- (12) R. C. Neuman, Acc. Chem. Res., 5, 381 (1972).

- (13) D. R. Stranks, Pure Appl. Chem., 38, 303 (1974).
- (14) T. W. Swaddle, Coord. Chem. Rev., 14, 217 (1974).
   (15) H. G. Drickamer, Pure Appl. Chem., 43, 379 (1975)
- (16) See, for example, I. Klotz, "Chemical Thermodynamics", W. A. Benjamin, New York, N.Y., 1964.
- (17) P. Haberfield, A. Nudelman, A. Bloom, R. Romm, and H. Ginsberg, J. Am. (17) F. Haberheld, A. Moelman, A. Bloom, R. Romin, and R. Grochem. Soc., 93, 1792 (1971).
  (18) See, e.g., V. Rothmund, Z. Phys. Chem., 20, 168 (1896).
  (19) M. Planck, Ann. Phys. Chem., 32, 462 (1887).
  (20) E. A. Guggenheim, Trans. Faraday Soc., 33, 607 (1937).

- (21) R. Ginell, J. Chem. Phys., 34, 1249 (1961).
- (22) J. Orszagh, M. Barigand, and J. J. Tondeur, Bull. Soc. Chim. Fr., 1685 (1976)
- (23) C. A. Eckert, Proc. Int. Conf. High Pressure 6th, in press.
- (24) B. T. Baliga and E. Whalley, Can. J. Chem., 48, 528 (1970) (25) H. S. Golinkin, W. G. Laidlaw, and J. B. Hyne, Can. J. Chem., 44, 2193
- (1966).
- (26)D. L. Gay, Can. J. Chem., 49, 3231 (1971).
- M. J. Mackinnon and J. B. Hyne, Can. J. Chem., 49, 3840 (1971).
- H. D. Brauer and H. Kelm, Z. Phys. Chem. (Frankfort am Main) 79, 98 (1972)
- (29) B. S. El'yanov and M. G. Gonikberg, Bull. Acad. Sci. USSR, 870, 934
- (30) B. S. El'yanov and M. G. Gonikberg, Bull. Acad. Sci. USSR, 1044 (1967)
- (31) B. S. El'yanov and M. G. Gonikberg, Russ. J. Phys. Chem., 46, 856 (1972)
- (32) B. S. El'yanov and S. D. Hamann, Aust. J. Chem., 28, 945 (1975).
- (32) B. S. Liyallov and S. D. Parlialli, Austria. J. Chem., 26, 945 (1975).
  (33) M. Nakahara, Rev. Phys. Chem. Jpn., 44, 57 (1974).
  (34) H. Tiltscher and R. Lohmüller, Z. Naturforsch., Teil B, 31, 277 (1976).
  (35) C. Walling and D. D. Tanner, J. Am. Chem. Soc., 85, 612 (1963).
  (36) T. Fujii, Rev. Phys. Chem. Jpn., 44, 38 (1974).

- (37) W. J. le Noble, A. R. Miller, and S. D. Hamann, J. Org. Chem., 42, 338
- (38) R. B. Murphy and W. F. Libby, J. Am. Chem. Soc., 99, 39 (1977).
- (39) See for instance A. F. M. Barton, J. Chem. Educ., 48, 156 (1971).
   (40) R. J. Ouellette and S. H. Williams, J. Am. Chem. Soc., 93, 466 (1971).

- (40) R. J. Ouellette and S. H. Williams, J. Am, Chem. Soc., 93, 466 (1971).
  (41) J. Owens and T. Koenig, J. Org. Chem., 39, 3153 (1974).
  (42) M. R. J. Dack, J. Chem. Educ., 51, 231 (1974).
  (43) N. Nodelman and J. L. Martin, J. Am. Chem. Soc., 98, 6597 (1976).
  (44) J. P. Snyder and D. N. Harpp, J. Am. Chem. Soc., 98, 7823 (1976).
  (45) R. C. Neuman, J. Org. Chem., 37, 495 (1972).
  (46) R. Picker, E. Tremblay, and C. Jolicoeur, J. Soln. Chem., 3, 377 (1974);
  O. Kratky, H. Leopold, and H. Stabipper, Z. Angew. Phys. 27, 273. O. Kratky, H. Leopold, and H. Stabinger, Z. Angew. Phys., 27, 273
- (47) R. Zana and E. Yeager, J. Phys. Chem., 70, 594 (1966); 71, 521, 4241
- (1967); K. M. Kale and R. Zana, *J. Soln. Chem.*, **6**, 733 (1977). (48) J. T. Edward, P. G. Farrell, and F. Shahidi, *J. Chem. Soc., Faraday Trans.* 1, 73, 705, 715 (1977).
- (49) F. J. Millero, *Chem. Rev.*, **71**, 147 (1971).
  (50) K. R. Brower, J. Peslak, and J. Elrod, *J. Phys. Chem.*, **73**, 207 (1969).
  (51) R. A. Grieger and C. A. Eckert, *AlChE J.*, **16**, 766 (1970).

- (52) K. R. Brower, J. Am. Chem. Soc., 90, 5401 (1968).
- (53) A. D. Yu, M. D. Waissbluth, and R. A. Grieger, Rev. Sci. Instrum., 44, 1390 (1973)
- A. Jost, Ber. Bunsenges. Phys. Chem., 79, 850 (1975); B. B. Hasinoff,
- Can. J. Chem., **52**, 910 (1974). (55) H. Yamada, Chem. Lett., 747 (1972); Rev. Sci. Instrum., **45**, 34 (1974).
- J. Jonas, Rev. Sci. Instrum., 43, 643 (1972). A superior probe has been described by H. Vanni, W. L. Earl, and A. E. Merbach, J. Magn. Resonance, in press.
- W. Z. Plachy and T. J. Schaafsma, Rev. Sci. Instrum., 40, 1590 (1969);
   K. W. Böddeker, G. Lang, and U. Schindewolf, Angew. Chem., Int. Ed. Engl., 8, 138 (1969);
   W. J. le Noble and P. Staub, J. Organomet. Chem., in press
- (58) K. Heremans, Proc. Int. Conf. High Pressure, 6th, 1977, in press.
- (59) E. F. Caldin and B. B. Hasinoff, J. Chem. Soc., Faraday Trans. 1, 71, 515 (1975)
- (60) T. Moriyoshi, Bull. Chem. Soc. Jpn., 44, 2582 (1971)
- (61) J. R. Ferraro and L. J. Basile, Appl. Spectrosc., 28, 505 (1974).
  (62) International System of Units, Aust. J. Chem., 30, (1977) (prologue).
- (63) K. R. Brower and T. L. Wu, *J. Am. Chem. Soc.*, **92**, 5303 (1970). (64) H. Plieninger and H. O. Schnelle, *Tetrahedron*, **33**, 1197 (1977).
- (65) H. D. Lüdemann, R. Rauchschwalbe, and E. Lang, Angew. Chem., Int. Ed. (66) R. C. Neuman and J. V. Behar, J. Am. Chem. Soc., 89, 4549 (1967).
  (67) R. C. Neuman and J. V. Behar, J. Am. Chem. Soc., 91, 6024 (1969).
  (68) R. C. Neuman and J. V. Behar, J. Org. Chem., 36, 654 (1971).

- (69) R. C. Neuman and J. V. Behar, Tetrahedron Lett., 3281 (1968).
  (70) R. C. Neuman and R. J. Bussey, Tetrahedron Lett., 5859 (1968).
  (71) R. C. Neuman and R. J. Bussey, J. Am. Chem. Soc., 92, 2440 (1970). (72) R. C. Neuman and G. D. Holmes, J. Am. Chem. Soc., 93, 4242 (1971)
- (73) R. C. Neuman, G. D. Lockyer, and M. J. Amrich, Tetrahedron Lett., 1221 (1972)
- (74) R. C. Neuman and M. J. Amrich, J. Am. Chem. Soc., 94, 2730 (1972).
   (75) R. C. Neuman and R. P. Pankratz, J. Am. Chem. Soc., 95, 8372 (1973)

- (1973).
  (76) R. C. Neuman and E. W. Ertley, *Tetrahedron Lett.*, 1225 (1972).
  (77) R. C. Neuman and E. W. Ertley, *J. Am. Chem. Soc.*, 97, 3130 (1975).
  (78) R. C. Neuman and R. Wolfe, *J. Org. Chem.*, 40, 3147 (1975).
  (79) E. Ishihara, Y. Ogo, and T. Imoto, *Z. Phys. Chem.*, 255, 732 (1974).
  (80) L. S. Pan, T. N. Andersen, and H. Eyring, *J. Phys. Chem.*, 71, 2258 (1972). (1967).
- (81) R. Mündnich and H. Plieninger, *Tetrahedron Lett.*, 32, 2335 (1976).
  (82) R. Schmidt, H. C. Steinmetzer, H. D. Brauer, and H. Kelm, *J. Am. Chem. Soc.*, 98, 8181 (1976).
- (83) J. Aspden, N. A. Khawaja, J. Reardon, and D. J. Wilson, J. Am. Chem. Soc., 91, 7580 (1969).
- Y. Ogo and T. Sano, Colloid Polym. Sci., 254, 470 (1976).
- (85) Y. Ogo, M. Yokawa, and T. Imoto, *Makromol. Chem.*, **171**, 123 (1973). (86) M. Yokawa, Y. Ogo, and T. Imoto, *Makromol. Chem.*, **175**, 179 (1974). (87) M. Yokawa, Y. Ogo, and T. Imoto, *Makromol. Chem.*, **175**, 2903
- (1974)
- (88) M. Yokawa, Y. Ogo, and T. Imoto, Makromol. Chem., 175, 2913 (1974).
- (89) M. Yokawa and Y. Ogo, *Makromol. Chem.*, 177, 429 (1976).
  (90) M. Yokawa, J. Yoshida, and Y. Ogo, *Makromol. Chem.*, 178, 443 (1977).
- (91) R. A. Grieger and C. A. Eckert, J. Am. Chem. Soc., 92, 2918 (1970).
- (92) R. A. Grieger and C. A. Eckert, J. Am. Chem. Soc., 92, 7149 (1970).
  (93) R. A. Grieger and C. A. Eckert, Trans. Faraday Soc., 66, 2579 (1970).
  (94) B. A. Grieger and C. A. Eckert, Ind. Eng. Chem. Fundam., 10, 369 (1971)
- (95) B. E. Poling and C. A. Eckert, Ind. Eng. Chem. Fundam., 11, 451 (1972).
- (96) J. R. McCabe and C. A. Eckert, Ind. Eng. Chem. Fundam., 13, 168 (1973).
- (97) K. Seguchi, A. Sera, and K. Murayama, Bull. Chem. Soc. Jpn., 47, 2242
- (98) C. Brun and G. Jenner, Tetrahedron, 28, 3113 (1972)
- (99) J. Rimmelin and G. Jenner, *Tetrahedron*, **30**, 3081 (1974). (100) J. Rimmelin, G. Jenner, and H. Abdi-Oskoui, *Bull. Soc. Chim. Fr.*, 341
- (101) G. Swieton, J. V. Jouanne, and H. Kelm, Proc. Int. Conf. High Pressure, 4th, 1974, 652 (1975). (102) W. J. le Noble and B. A. Ojosipe, J. Am. Chem. Soc., **97**, 5939 (1975). (103) F. K. Fleischmann and H. Kelm, *Tetrahedron Lett.*, 3773 (1973).

- (104) N. S. Isaacs and E. Rannala, J. Chem. Soc., Perkin Trans. 2, 1555 (1975).
- (105) J. Arimoto and J. Osugi, Rev. Phys. Chem. Jpn., 44, 25 (1974); R. Huisgen,
- R. Schug, and G. Steiner, Bull. Soc. Chim. Fr., 1813 (1976).
   (106) C. Brun, G. Jenner, and A. Deluzarche, Bull. Soc. Chim. Fr., 2332 (1972);
   W. G. Dauben and H. O. Krabbenhoft, J. Org. Chem., 42, 282 (1977); J. Am. Chem. Soc., 98, 1992 (1976); W. G. Dauben and A. P. Kozikowski,
- ibid., 96, 3664 (1974).
   (107) W. H. Pirkle, C. A. Eckert, W. V. Turner, B. A. Scott, and L. H. McKendry, J. Org. Chem., 41, 2495 (1976).
- (108) W. Jarre, D. Bieniek, and F. Korte, Angew. Chem., Int. Ed. Engl., 14, 181 (1975).
- (109) M. Nakahara, Y. Tsuda, M. Sasaki, and J. Osugi, Chem. Lett., 731 (1976); a revised structure is given by M. Nakahara, Y. Uosaki, M. Sasaki, and J. Osugi, Rev. Phys. Chem. Jpn., 47, 119 (1977).
  (110) H. de Suray, G. Leroy, and J. Weiler, Tetrahedron Lett., 2209 (1974).
- (111) A. V. Kamernitzky, I. S. Levina, E. I. Mortikova, and B. S. El'yanov, Tet-rahedron Lett., 3235 (1975); A. V. Kamernitzky, I. S. Levina, E. I. Nortikova, V. M. Shitkin, and B. S. El'yanov, Tetrahedron, 33, 2135 (1977).
- (112) H. S. Golinkin, I. Lee, and J. B. Hyne, J. Am. Chem. Soc., 89, 1307

- (1967)
- (113) D. D. Macdonald and J. B. Hyne, Can. J. Chem., 48, 2494 (1970).
- (114) S. J. Dickson and J. B. Hyne, Can. J. Chem., 49, 2394 (1971).
- (115) D. L. Gay and E. Whalley, Can. J. Chem., 48, 2021 (1970).
- (116) G. Hills and C. A. N. Viana, *Nature* (*London*), **229**, 194 (1971). (117) C. S. Davis and J. B. Hyne, *Can. J. Chem.*, **51**, 1687 (1973).
- (118) M. J. Mackinnon, A. B. Lateef, and J. B. Hyne, Can. J. Chem., 48, 2025 (1970)
- (119) D. Büttner and H. Heydtmann, Ber. Bunsenges, Phys. Chem., 73, 640
- (120) B. T. Baliga and E. Whalley, J. Phys. Chem., 73, 654 (1969)
- (121) A. B. Lateef and J. B. Hyne, Can. J. Chem., 47, 1369 (1969).
   (122) K. Arakawa and S. Terasawa, Koatsu Gasu, 6, 348 (1969).
- (123) K. J. Laidler and R. Martin, Int. J. Chem. Kinet., 1, 113 (1969)
- (124) S. Arakawa, H. Itsuki, and S. Terasawa, Koatsu Gasu, 11, 689 (1974).

- (124) S. Afakawa, R. Itsuki, and S. Terasawa, Roatsi Asasi, T., 605 (1977).
  (125) A. H. Ewald and D. J. Ottley, Aust. J. Chem., 20, 1335 (1967).
  (126) K. R. Brower, J. Am. Chem. Soc., 94, 5747 (1972).
  (127) S. Hariya and S. Terasawa, Nippon Kagaku Zasshi, 90, 765 (1969).
  (128) B. T. Baliga and E. Whalley, J. Phys. Chem., 71, 1166 (1967). Neutral ester hydrolysis is one instance in which the pressure effect has become a strong and strong ages stocks. factor in a practical problem: the deep-sea disposal of nerve gas stocks (W. A. Adams, Environ. Sci. Technol., 928 (1972)).
- (129) D. L. Gay and E. Whalley, *J. Phys. Chem.*, **72**, 4145 (1968).
  (130) A. Sera, T. Miyazawa, T. Matsuda, Y. Togawa, and K. Maruyama, *Bull.* Chem. Soc. Jpn., 46, 3490 (1973).
- A. Sera, N. Tachikawa, and K. Maruyama, Proc. Int. Conf. High Pressure. 4th, 1974, 648 (1975).
- (132) A. Sera, C. Yamagami, and K. Murayama, Bull. Chem. Soc. Jpn., 46, 3864 (1973).
- (133) W. J. le Noble and A. Shurpik, J. Org. Chem., 35, 3588 (1970).
  (134) A. Sera, C. Yamagami, and K. Maruyama, Bull, Chem. Soc., Jpn., 47, 704 (1974); C. Yamagami and A. Sera, Chem. Lett., 741 (1972).
- (1374), C. Tarriaganti and A. Sera, Cetta, Lett., 741 (1372).
  (135) W. J. le Noble and B. Gabrielsen, Tetrahedron Lett., 45 (1970).
  (136) G. J. Hills and C. A. Viana, "Hydrogen Bonded Solvent Systems", A. K. Covington and P. Jones, Ed., Taylor & Francis, London, 1968, p 261.
  (137) C. A. N. Viana, Rev. Port. Quim., 12, 9 (1970).

- (138) P. O. I. Virtanen, Suom. Kemistil. B, 40, 179 (1967).
  (139) C. Yamagami, A. Sera, and K. Maruyama, Bull. Chem. Soc. Jpn., 47, 881 (1974).
- (140) W. J. le Noble, H. Guggisberg, T. Asano, L. Cho, and C. Grob, Proc. Int. Conf. High Pressure, 4th, 1974, 643 (1975); and J. Am. Chem. Soc., 98, 920 (1976).
- (141) C. A. Grob, Angew. Chem., Int. Ed. Engl., 8, 535 (1969).
- (142) R. K. Williams, J. J. Loveday, and A. K. Colter, Can. J. Chem., 50, 1303 (1972)
- (143) K. R. Brower, J. Am. Chem. Soc., 94, 5747 (1972).
  (144) C. S. Davis and J. B. Hyne, Can. J. Chem., 50, 2270 (1972).
- (145) H. Heydtmann and H. Stieger, Ber. Bunsenges. Phys. Chem., 70, 1095 (1966)
- (146) A. Kivinen and A. Viitala, Suom. Kemistil. B, 40, 19 (1967).
  (147) M. L. Tonnet and A. N. Hambly, Aust. J. Chem., 23, 2435 (1970).
- (148) Y. Okamoto and T. Yano, Tetrahedron Lett., 919 (1971); K. I. Lee and Y.
- Okamoto, *J. Org. Chem.*, **41**, 1552 (1976). (149) H. Hartmann, H. D. Brauer, and G. Rinck, *Z. Phys. Chem.*, **61**, 47 (1968); H. Heydtmann, *ibid.*, **54**, 237 (1967).
- (150) Y. Kondo, H. Tojima, and N. Tokura, Bull. Chem. Soc. Jpn., 40, 1408 (1967). (151) Y. Kondo, M. Uchida, and N. Tokura, *Bull. Chem. Soc. Jpn.*, **41**, 992
- (152) H. Tiltscher and Y. K. Wang, Z. Phys. Chem. (Frankfurt am Main), 90, 299
- (1976)(153) H. D. Brauer and H. Kelm, Z. Phys. Chem. (Frankfurt am Main), 76, 98
- (1971).(154) H. Heydtmann and D. Büttner, Z. Phys. Chem. (Frankfurt am Main), 63,
- 39 (1969). (155) Y. Kondo, M. Onishi, and N. Tokura, Bull. Chem. Soc. Jpn., 45, 3579
- (1972); Y. Kondo, M. Shinzawa, and N. Tokura, ibid., 50, 713 (1977) (156) K. Tamura, Y. Ogo, and T. Imoto, Bull. Chem. Soc. Jpn., 46, 2988 (1973).
- (157) W. J. le Noble and Y. Ogo, Tetrahedron, 26, 4119 (1970).
- (158) Y. Okamoto and K. I. Lee, J. Am. Chem. Soc., 97, 4015 (1975).
- (159) W. J. le Noble, A. R. Miller, and S. D. Hamann, J. Org. Chem., 42, 338 (1977).
- (160) W. J. le Noble and T. Asano, J. Am. Chem. Soc., 97, 1778 (1975).
- (161) W. J. le Noble and A. R. Miller, submitted for publication
- (162) See also Y. Okamoto and H. Shimizu, J. Am. Chem. Soc., 90, 6145
- (163) S. Arakawa, H. Itsuki, and S. Terasawa, Koatsu Gasu, 11, 633 (1974).
   (164) S. Arakawa, S. Hariya, H. Itsuki, and S. Terasawa, Nippon Kagaku Zasshi,
- 1170 (1974). (165) W. J. le Noble and B. Gabrielsen, Tetrahedron Lett., 3417 (1971) (166) K. R. Brower, M. Muhsin, and H. E. Brower, J. Am. Chem. Soc., 98, 779
- (167) S. D. Hamann, Aust. J. Chem., 28, 693 (1975) (168) M. Okamoto, M. Sasaki, and J. Osugi, Rev. Phys. Chem. Jpn., 47, 33 (1977)
- (169) N. J. van Hoboken and H. Steinberg, Recl. Trav. Chim. Pays-Bas, 91, 153 (1972); N. J. van Hoboken, P. G. Wiering, and H. Steinberg, Ibid., 94, 243
- (170) S. D. Hamann and M. Linton, Aust. J. Chem., 30, 1883 (1977).
  (171) K. G. Liphard and A. Jost, Ber. Bunsenges. Phys. Chem., 80, 125 (1976)
- (172) C. D. Hubbard, C. J. Wilson, and E. F. Caldin, J. Am. Chem. Soc., 98, 1870 (1976).
- (173) T. Moriyoshi, ref 60 and Rev. Phys. Chem. Jpn., 40, 102 (1970); 41, 22 (1971).

- (174) W. J. le Noble, R. Goitien, and A. Shurpik, Tetrahedron Lett., 895 (1969).
- (175) W. J. le Noble and Y. S. Chang, J. Am. Chem. Soc., 94 = 54]2 (1972);
- J. Chem. Educ., **50**, 418 (1973). (176) T. Imoto and K. Aotani, *Nippon Kagaku Zasshi*, **89**, 240 (1968). (177) T. Moriyoshi and K. Mikami, *Rev. Phys. Chem. Jpn.*, *38*, 50 (1968).
- (178) T. Moriyoshi and M. Hirata, Rev. Phys. Chem. Jpn., 40, 59 (1970).
- (179) M. L. Tonnet and E. Whalley, *Can. J. Chem.*, **53**, 3414 (1975). (180) B. Andersen, F. Grønlund, and J. Olsen, *Acta Chem. Scand.*, **23**, 2458 (1969).
- (181) J. J. Scott and K. R. Brower, J. Am. Chem. Soc., 89, 2682 (1967
- (182) H. Tiltscher and E. Staude, *Angew. Makromol. Chem.*, **10**, 97 (1970). (183) W. J. le Noble, Y. Tatsukami, and H. F. Morris, *J. Am. Chem. Soc.*, **92**,
- (184) W. J. le Noble, D. M. Chiou, H. Matuszyńska, and Y. Okaya, Tetrahedron Lett., 3865 (1977).
- (185) S. K. Bhattacharyya and G. B. Purohit, J. Phys. Chem., 73, 3278 (1969).
- (186) S. K. Bhattacharyya and C. K. Das, J. Am. Chem. Soc., 91, 6715 (1969)
- (187) S. K. Bhattacharyga, F. N. I. Purohit, and G. B. Purohit, Proc. Indian Natl. Sci. Acad., Part A, 36, 154 (1970).
- (188) H. Takaya, N. Todo, T. Hosoya, and T. Minegishi, *Bull. Chem. Soc. Jpn.*, **44**, 1175 (1971).
- (189) P. O. I. Virtanen and M. Jarvinen, Suom. Kemistil. B, 44, 23 (1971)
- (190) P. O. I. Virtanen and T. Kuokkanen, *Suom. Kemistil. B*, **46**, 267 (1973). (191) P. O. I. Virtanen and T. Kuokkanen, *Finn. Chem. Lett.*, 177 (1974).
- (192) K. Aotani and T. Imoto, Nippon Kagaku Zasshi, 89, 240 (1968).
- (193) J. Koskikallio and U. Turpinen, Acta Chem. Scand., 25, 3360 (1971).

- (194) A. Kivinen and A. Viitala, Suom. Kemistil. B, 41, 372 (1968).
  (195) H. Itsuki and S. Terasawa, Koatsu Gasu, 5, 427 (1968).
  (196) H. Itsuki, B. Matsuda, and S. Terasawa, Nippon Nagaku Zasshi, 90, 1016 (1969).
- (197) G. B. Purohit and S. K. Bhattacharyya, *Indian J. Chem.*, 8, 602 (1970).
  (198) S. D. Hamann, private communication. Neutral ester hydrolysis is one
- instance in which the pressure effect has become a factor in a practical problem: the deep-sea disposal of nerve gas stocks (W. A. Adams, Environ. Sci. Technol., 928 (1972)). (199) H. Itsuki and S. Terasawa, Nippon Kagaku Zasshi, 90, 1119 (1969). (200) L. Pyy and J. Koskikallio, Suom. Kemistil. B, 40, 134 (1967).

- (201) J. Osugi, M. Sasaki, and I. Onishi, Rev. Phys. Chem. Jpn., 36, 100 (1966).
- (202) J. Osugi, M. Sasaki, and I. Onishi, Rev. Phys. Chem. Jpn., 39, 57 (1969).
- (203) J. Osugi, M. Sasaki, and I. Onishi, Rev. Phys. Chem. Jpn., 40, 39 (1970).
- (204) J. Osugi and I. Onishi, Rev. Phys. Chem. Jpn., 41, 32 (1971).
- (205) J. Onishi, Rev. Phys. Chem. Jpn., 41, 42 (1971).
  (206) T. Moriyoshi and K. Tamura, Rev. Phys. Chem. Jpn., 40, 48 (1970); K. Tamura and T. Moriyoshi, Bull. Chem. Soc. Jpn., 47, 2942 (1974).
  (207) G. Guillerm, F. Meganem, M. Lequan, and K. R. Brower, J. Organomet.
- Chem., 67, 43 (1974).
- (208) W. J. le Noble and R. Mukhtar, *J. Am. Chem. Soc.*, **97**, 5938 (1975). (209) M. Steinberg, private communication.

- (209) M. Steinberg, private communication.
  (210) N. S. Isaacs and E. Rannala, *Tetrahedron Lett.*, 2039 (1977).
  (211) Y. Okamoto, *J. Am. Chem. Soc.*, 90, 5639 (1968).
  (212) Y. Okamoto and H. Shimizu, *Tetrahedron Lett.*, 2751 (1968).
  (213) Y. Okamoto and Y. Shimakawa, *J. Org. Chem.*, 35, 3752 (1970).
  (214) Y. Okamoto and K. I. Lee, submitted for publication.
  (215) H. Plieninger, C. C. Heuck, and R. Bühler, *Tetrahedron*, 28, 73 (1972).
  (216) H. Plieninger and H. P. Kraemer, *Angew. Chem.*, *Int. Ed. Engl.*, 15, 243 (1976).
- (217) J. Roemer-Mähler, D. Bieniek, and F. Korte, Z. Naturforsch., Teil B. 30.

- (218) R. C. Lamb and J. G. Pacific, *J. Phys. Chem.*, **70**, 314 (1966).
  (219) R. C. Neuman and J. V. Behar, *J. Org. Chem.*, **36**, 657 (1971).
  (220) C. M. Backman, S. Claesson, and M. Szwarc, *Trans. Faraday Soc.*, **66**, 3061 (1970).
- (221) V. M. Zhulin, M. Y. Botnikov, and I. K. Milyavskaya, Bull. Acad. Sci. USSR.
- (221) V. M. Zhulin, M. Y. Botnikov, and I. K. Milyavskaya, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1038 (1975).
  (222) V. M. Zhulin, M. Y. Botnikov, and I. K. Milyavskaya, Bull. Acad. Sci. USSR, Div. Chem. Sci., 424 (1975).
  (223) V. M. Zhulin, B. I. Rubinshtein, and M. Y. Botnikow, Bull. Acad. Sci. USSR,
- Div. Chem. Sci., 230 (1975).

  (224) N. I. Prokhorova, B. S. El'yanov, and M. G. Gonikberg, Bull. Acad. Sci. USSR, Div. Chem. Sci., 256 (1967).
- (225) K. Seguchi, A. Sera, and K. Maruyama, Tetrahedron Lett., 1585 (1973)
- (226) B. S. El'yanov, E. I. Klabunovskii, M. G. Gonikberg, G. M. Parfenova, and L. F. Godunova, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1557 (1971).
  (227) B. S. El'yanov, S. K. Shakhova, S. V. Vitt, and M. G. Gonikberg, *Bull. Acad.*
- Sci. USSR, Div. Chem. Sci., 504 (1969). (228) S. K. Shakhova and B. S. El'yanov, Bull. Acad. Sci. USSR, Div. Chem. Sci.,
- 1461 (1973).

- (229) C. A. Stewart, J. Am. Chem. Soc., 94, 635 (1972).
  (230) W. J. le Noble and R. Mukhtar, J. Am. Chem. Soc., 96, 6191 (1974).
  (231) B. S. El'yanov and T. B. Svetlanova, Bull. Acad. Sci. USSR, Div. Chem.
- (232) B. S. El'yanov, I. P. Murina, E. I. Klabunovskii, Y. I. Petrov, and G. M. Parfenova, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1806 (1972).
  (233) H. Plieninger and H. P. Kraemer, *Angew. Chem.*, 88, 230 (1976).
  (234) R. Goto, T. Asano, K. Matsimoto, and A. Sera, *Rev. Phys. Chem. Jpn.*, 37, 18 (1987).
- 16 (1967).
- (235) W. J. le Noble, E. H. White, and P. M. Dzadzic, J. Am. Chem. Soc., 98, 4020 (1976)
- (236) W. J. le Noble, T. Hayakawa, A. K. Sen, and Y. Tatsukami, J. Org. Chem.

- 36, 193 (1971); see also W. J. le Noble, J. Am. Chem. Soc. 85, 1479
- (237) W. J. le Noble and S. K. Palit, Tetrahedron Lett., 493 (1972).
- T. Asano, Bull. Chem. Soc. Jpn., 42, 2005 (1969); T. Asano, A. Sera, and R. Goto, Tetrahedron Lett., 4777 (1968); T. Asano, R. Goto, and A. Sera, Bull. Chem. Soc. Jpn., 40, 2208 (1967)
- C. D. Schmulbach, J. Brady, and F. Dachille, Inorg. Chem., 7, 287 (1968)

- (1968).
  (240) G. E. Humiston and G. E. Brady, *Inorg. Chem.*, **8**, 1773 (1969).
  (241) G. A. Lawrance and D. R. Stranks, *Inorg. Chem.*, **16**, 929 (1977).
  (242) D. R. Stranks and N. Vanderhoek, *Inorg. Chem.*, **15**, 2639 (1976).
  (243) E. G. Conze, H. Stieger, and H. Kelm, *Chem. Ber.*, **105**, 2334 (1972).
  (244) Y. Kitamura, *Bull. Chem. Soc. Jpn.*, **49**, 1002 (1976).
  (245) J. R. Ferraro, K. Nakamoto, J. T. Wang, and L. Lauer, *Chem. Commun.*, 262 (1976). 266 (1973).

- (246) D. R. Stranks, *Pure Appl. Chem.*, *38*, 303 (1974).
  (247) N. G. Adamson and D. R. Stranks, *Chem. Commun.*, 648 (1967).
  (248) A. E. Merbach and H. Vanni, *Helv. Chim. Acta*, **60**, 1124 (1977).
- (249) S. T. D. Lo, L. M. Oudeman, J. C. Hanson, and T. W. Swaddle, Can. J. Chem., 54, 3685 (1976).
- (250) D. L. Carle and T. W. Swaddle, Can. J. Chem., 51, 3795 (1973).
- (251) S. T. D. Lo and T. W. Swaddle, *Inorg. Chem.*, **14**, 1878 (1975). (252) S. B. Tong, H. R. Krouse, and T. W. Swaddle, *Inorg. Chem.*, **15**, 2643
- (253) D. R. Stranks and T. W. Swaddle, J. Am. Chem. Soc., 93, 2783 (1971). (254) T. W. Swaddle and D. R. Stranks, *J. Am. Chem. Soc.*, **94**, 8357

- (255) S. B. Tong and T. W. Swaddle, *Inorg. Chem.*, **13**, 1538 (1974). (256) W. E. Jones, L. R. Carey, and T. W. Swaddle, *Can. J. Chem.*, **50**, 2739 (1972)
- (257) W. E. Jones and T. W. Swaddle, Chem. Commun., 998 (1969). (258) N. Ise, M. Ishikawa, Y. Taniguchi, and K. Suzuki, J. Polym. Sci., Polym.

- Lett. Ed., 14, 667 (1976).
  (259) D. L. Gay and R. Nalepa, Can. J. Chem., 48, 910 (1970).
  (260) H. Lentz and S. O. Oh, High Temp.-High Pressure, 7, 91 (1975).
  (261) L. R. Carey, W. E. Jones, and T. W. Swaddle, Inorg. Chem., 10, 1566 (1971)
- (262) M. C. Weekes and T. W. Swaddle, Can. J. Chem., 53, 3697 (1975).
- (263) D. L. Gay and R. Nalepa, Can. J. Chem., 49, 1644 (1971).
  (264) G. Guastalla and T. W. Swaddle, Can. J. Chem., 51, 821 (1973).
  (265) J. M. Lucie, D. R. Stranks, and J. Burgess, J. Chem. Soc., Dalton Trans., 245 (1975).
- (266) H. E. Brower, L. Hathaway, and K. R. Brower, Inorg. Chem., 5, 1899 (266) H. E. Brower, L. Hauriaway, and R. H. Brower, Miorg. Chem., 4, (1966).
  (267) T. W. Swaddle and P. C. Kong, Can. J. Chem., 48, 3223 (1970).
  (268) Y. Kitamura, Bull. Chem. Soc. Jpn., 50, 2097 (1977).
  (269) D. A. Palmer and H. Kelm, Inorg. Chim. Acta, 19, 117 (1976).
  (270) D. R. Stranks and N. Vanderhoek, Inorg. Chem., 15, 2645 (1976).
  (271) C. Schenk and H. Kelm, J. Coord. Chem., 2, 71 (1972).
  (272) K. R. Brower, J. Am. Chem. Soc., 90, 5401 (1968).
  (273) A. Leet Par Purpagas Phys. Chem. 80, 316 (1976).

- (273) A. Jost, Ber. Bunsenges. Phys. Chem., 80, 316 (1976).
  (274) B. B. Hasinoff, Can. J. Chem., 54, 1820 (1976).
  (275) T. R. Sullivan, D. R. Stranks, J. Burgess, and R. I. Haines, J. Chem. Soc., Dalton Trans., 1460 (1977). (276) E. F. Caldin, M. W. Grant, and B. B. Hasinoff, *J. Chem. Soc., Faraday Trans.*
- 1, 68, 2247 (1972)
- (277) E. F. Caldin, M. W. Grant, and B. B. Hasinoff, Chem. Commun., 1351
- (278) E. F. Caldin and M. W. Grant, J. Chem. Soc., Faraday Trans. 1, 69, 1649 (1973).
- (279) M. W. Grant, J. Chem. Soc., Faraday Trans. 1, 69, 560 (1973).
- (280) B. B. Hasinoff, *Can. J. Chem.*, **52**, 910 (1974). (281) M. W. Grant, and C. J. Wilson, *J. Chem. Soc., Faraday Trans.* 1, **72**, 1362 (1976).
- (282) K. R. Brower and T. S. Chen, Inorg. Chem., 12, 2198 (1973).
- (283) A. Jost, Ber. Bunsenges. Phys. Chem., 79, 850 (1975).
- (284) D. A. Palmer and H. Kelm, Proc. Int. Conf. High Pressure, 4th, 1974, 657, (1974).

- (285) T. Taylor and L. R. Hathaway, *Inorg. Chem.*, 8, 2135 (1969).
  (286) H. Stieger and H. Kelm, *J. Phys. Chem.*, 77, 290 (1973).
  (287) R. Schmidt, M. Geis, and H. Kelm, *Z. Phys. Chem.* (*Frankfurt am Main*), 92, 223 (1974).
- (288) R. J. Maguire and S. Anand, J. Inorg. Nucl. Chem., 38, 1167 (1976); see also R. J. McGuire, S. Anand, H. Chew, and W. A. Adams, *J. Inorg. Nucl. Chem.*, **38**, 1659 (1976).

  (289) E. Brücher and H. Kelm, *J. Coord. Chem.*, **4**, 133 (1974).

  (290) W. J. le Noble and D. Skulnik, *Tetrahedron Lett.*, 5217 (1967).

- (291) W. J. le Noble, E. M. Schulman, and D. N. Skulnik, *J. Am. Chem. Soc.*, **93**, 4710 (1971).
- (292) W. J. le Noble and W. S. Chang, Synthesis, 106 (1973).
  (293) A. P. Hagen, D. J. Jones, and S. R. Ruttman, J. Inorg. Nucl. Chem., 36, 1217 (1974); A. P. Hagen and H. W. Beck, Inorg. Chem., 15, 1512 (1976); A. P. Hagen and B. W. Callaway, Ibid., 14, 1622, 2825 (1975); A. P. Hagen A. P. Hagen and B. W. Callaway, *Ibid.*, 14, 1622, 2825 (1975); A. P. Hagen and E. A. Elphingstone, *Ibid.*, 12, 478 (1973); *J. Inorg. Nucl. Chem.*, 35, 3719 (1973); 36, 504 (1974).

  (294) W. A. Adams and K. J. Laidler, *Can. J. Chem.*, 46, 1977, 1989 (1968). (295) F. J. Millero, E. V. Hoff, and L. Cahn, *J. Solution Chem.*, 1, 309 (1972). (296) G. K. Ward and F. J. Millero, *J. Solution Chem.*, 3, 417 (1974). (297) G. K. Ward and F. J. Millero, *Geochim. Cosmochim. Acta*, 39, 1595 (1975).

- (298) M. Tsuda, I. Shirotani, S. Minomura, and Y. Terayama, Bull. Chem. Soc. Jpn., 49, 2952 (1976).
- (299) A. J. Read, *J. Solution Chem.*, **4**, 53 (1975).
- (300) R. C. Neuman, E. Kauzmann, and A. Zipp, J. Phys. Chem., 77, 2687 (1973).

- (301) T. W. Swaddle and P. C. Kong, Can. J. Chem., 48, 3223 (1970).
  (302) H. Hoiland, J. Chem. Soc., Faraday Trans. 1, 70, 1180 (1974).
  (303) K. Suzuki, Y. Taniguchi, and T. Watanabe, J. Phys. Chem., 77, 1918 (1973). (304) H. Hoiland, *Acta Chem. Scand.*, **27**, 2687 (1973).
- (305) M. Hoiland, J. Chem. Soc., Faraday Trans. 1, 71, 797 (1975).
- (306) H. Hoiland and E. Vikingstad, J. Chem. Soc., Faraday Trans. 1, 71, 2007 (1975)
- (307) S. D. Hamann and M. Linton, J. Chem. Soc., Faraday Trans. 1, 70, 2239
- (308) H. P. Hopkins, W. C. Duer, and F. J. Millero, J. Solution Chem., 5, 263 (1976)
- (309) C. L. Liotta, A. Abidaud, and H. P. Hopkins, J. Am. Chem. Soc., 94, 8624 (1972). For data and discussion of the partial volumes of the lower carboxylic acids in water, see E. J. King, J. Phys. Chem., 73, 1220 (1969)
- (310) C. L. Liotta, E. M. Perdue, and H. P. Hopkins, J. Am. Chem. Soc., 96, 7981 (1974)
- (311) S. D. Hamann and M. Linton, J. Chem. Soc., Faraday Trans. 1, 70, 2239 (1974).
- (312) R. H. Stokes, Aust. J. Chem., 28, 2109 (1975). B. F. Hitch and R. E. Mesmer, J. Solution Chem., 5, 667 (1976), have reported the effect of ionic strength and temperature on  $\Delta V_i$  of ammonia. The former generally reduces it somewhat (e.g., from -31.4 to -24 cm $^3$ /mol between 0 and 3 M KCl at 25 °C), and the latter raises it greatly (e.g., from -31.4 to -174 cm<sup>3</sup>/mol between 25 and 300 °C at zero ionic strength).
- (313) S. Cabani, G. Conti, and L. Lepori, J. Phys. Chem., 78, 1030 (1974).
- (314) J. E. Desnoyers and M. Arel, *Can. J. Chem.*, **45**, 359 (1967).
   (315) R. E. Verrall and B. E. Conway, *J. Phys. Chem.*, **70**, 3961 (1966).
- (316) L. H. Laliberte and B. E. Conway, J. Phys. Chem., 74, 4116 (1970).
- (317) S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, J. Phys. Chem., 81, 982 (1977).
- (318) W. Y. Wen, N. Takeguchi, and D. P. Wilson, J. Solution Chem., 3, 103 (1974)
- (319) S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, J. Phys. Chem., 81, 987
- (320) M. Sakurai, T. Nakajima, T. Komatsu, and T. Nakagawa, Chem. Lett., 355 (1972)
- (321) S. D. Hamann and M. Linton, J. Chem. Soc., Faraday Trans. 1, 71, 485
- (322) W. J. le Noble and T. Asano, J. Org. Chem., 40, 1179 (1975).
- (323) W. L. Masterton, H. Welles, J. H. Knox, and F. J. Millero, J. Solution Chem., 3, 91 (1974).
- (324) E. Inada, K. Shimizu, and J. Osugi, Rev. Phys. Chem., Jpn., 42, 1 (1972). However, a larger value (-20.3 cm3/mol) was found by high-pressure laser Raman spectroscopy: R. M. Chatterjee, W. A. Adams, and A. R. Davis, J. Phys. Chem., 78, 246 (1974). It seems likely that these differences are a reflection of the presence of several species of associated and free ions.
- (325) F. J. Millero, F. Gombar, and J. Oster, J. Solution Chem., 6, 269 (1977).
- (326) F. J. Millero and W. L. Masterton, J. Phys. Chem., 78, 1287 (1974).
- (327) Y. Taniguchi, T. Watanabe, and K. Suzuki, Bull. Chem. Soc. Jpn., 48, 3032 (1975)
- (328) K. Shimizu, N. Tsuchihashi, and Y. Furumi, Rev. Phys. Chem. Jpn., 46,
- 30 (1976). (329) K. Shimizu and T. Okamoto, *Sci. Eng. Rev. Doshisha Univ.*, **16**, 120 (1975).
- (330) M. Ueno, K. Shimizu, and J. Osugi, Rev. Phys. Chem. Jpn., 43, 33 (1973)
- (331) S. Katz, M. P. Donovan, and L. C. Roberson, J. Phys. Chem., 79, 1930 (332) M. Nakahara, K. Shimizu, and J. Osugi, Rev. Phys. Chem. Jpn., 40, 12
- (1970). (333) T. G. Spiro, A. Revesz, and J. Lee, *J. Am. Chem. Soc.*, **90**, 4000
- (334) D. R. Kester and R. M. Pytkowicz, Geochim. Cosmochim. Acta, 34, 1039 (1970).
- (335) J. F. Cukurins and W. Strauss, Aust. J. Chem., 29, 249 (1976).
- (336) S. Claesson, B. Lundgren, and M. Szwarc, Trans. Faraday Soc., 66, 3053 (1970).
- (337) B. Lundgren, S. Claesson, and M. Szwarc, Chem. Scr., 3, 49 (1973). (338) B. Lundgren, S. Claesson, and M. Szwarc, Chem. Scr., 3, 53, 60
- (1973).
- (339) W. J. le Noble and A. R. Das, *J. Phys. Chem.*, **74**, 3429 (1970). (340) W. A. Adams and K. J. Laidler, *Can. J. Chem.*, **46**, 2005 (1968).
- (341) (a) Y. Kitamura, Rev. Phys. Chem. Jpn., 39, 1 (1969); (b) A. Persoons, J. Phys. Chem., 78, 1210 (1974); F. Nauwelaers, J. Everaert, and A. Persoons, manuscript in preparation; see also S. Rodriguez and H. Offen, Inorg. Chem., 10, 2086 (1971).
- (342) I. Ishihara, K. Hara, and J. Osugi, Rev. Phys. Chem. Jpn., 44, 11 (1974).
- (343) C. A. Angell and M. L. Abkemeier, *Inorg. Chem.*, **12**, 1462 (1973).
  (344) R. W. Macdonald and N. A. North, *Can. J. Chem.*, **52**, 3181 (1974).
  (345) N. A. North, *Geochim. Cosmochim. Acta*, **38**, 1075 (1974).

- (346) K. Suzuki and M. Tsuchiya, Bull. Chem. Soc. Jpn., 48, 1701 (1975).
- (347) A. H. Ewald, *Trans. Faraday Soc.*, **64**, 733 (1968).
  (348) A. H. Ewald and J. A. Scudder, *J. Phys. Chem.*, **76**, 249 (1972).
  (349) T. Nakayama and J. Osugi, *Rev. Phys. Chem. Jpn.*, **45**, 79 (1975).
  (350) T. Nakayama, M. Sasaki, and J. Osugi, *Rev. Phys. Chem. Jpn.*, **46**, 57 (1976).
- (351) W. J. le Noble and T. Asano, J. Am. Chem. Soc., 97, 1778 (1975)

- (352) C. A. Lewis and R. Wolfenden, J. Am. Chem. Soc., 95, 6685 (1973).
  (353) D. G. Kubler and H. W. Young, J. Org. Chem., 36, 200 (1971).
  (354) M. Kurabayashi, K. Yanagiya, and M. Yasumoto, Proc. Int. Conf. High Pressure, 4th, 1974, 663 (1975).

- (355) B. Andersen and P. E. Broe, Acta Chem. Scand., 26, 3691 (1972).
- (356) S. D. Christian, J. Grundnes, and P. Klaeboe, J. Am. Chem. Soc., 97, 3864 (1975)
- (357) S. D. Christian, J. Grundnes, and P. Klaeboe, J. Chem. Phys., 65, 496 (1976); S. D. Christian, J. Grundnes, P. Klaeboe, C. J. Nielsen, and T.
- Woldbaek, J. Mol. Struct., 34, 33 (1976). (358) R. N. Clayton, J. R. Goldsmith, K. J. Karel, T. K. Mayeda, and R. C. Newton, Geochim. Cosmochim. Acta, 39, 1197 (1975).
- (359) K. Mislow, R. Graeve, A. J. Gordon, and G. H. Wahl, J. Am. Chem. Soc. 86, 1733 (1964); S. A. Sherrod and V. Boekelheide, ibid., 94, 5513
- (360) J. Osugi, T. Mizukami, and T. Tachibana, Rev. Phys. Chem. Jpn., 37, 72 (1968)
- (361) J. von Jouanne and J. Heidberg, J. Magn. Reson., 7, 1 (1972).
   (362) W. J. le Noble, J. Am. Chem. Soc., 82, 5253 (1960).
- (363) For review and study, see O. L. Chapman, "Organic Photochemistry", Vol. I and II, Marcel Dekker, New York, N.Y., 1969; J. D. Coyle, *Chem. Soc. Rev.*, 329 (1974); N. J. Turro and G. Schuster, *Science*, **187**, 303 (1975); H. E. Zimmerman, *ibid.*, **191**, 523 (1976).
- (364) For some recent examples, see S. D. Hamann and M. Linton, Aust. J. Chem., 28, 701 (1975) for UV; P. T. T. Wong, Inorg. Chem., 14, 2271 (1975) for IR; H. G. Drickamer, Pure Appl. Chem., 43, 379 (1975) for organic solids (UV); K. Tamura and T. Imoto, Bull. Chem. Soc. Jpn., 48, 369 (1975) (Et values).
- (365) W. G. Herkstroeter, L. B. Jones, and G. S. Hammond, J. Am. Chem. Soc.,
- 88, 4777 (1966). (366) W. J. le Noble and R. Schlott, *Rev. Sci. Instrum.*, **47**, 770 (1976).
- (367) A. H. Ewald, J. Phys. Chem., 67, 1727 (1963).
- (368) D. W. Haworth and W. S. Metcalf, J. Chem. Soc., 4678 (1965).
- (369) T. Förster, C. O. Leiber, H. P. Seidel, and A. Weller, Z. Phys. Chem. (Frankfurt am Main), 39, 265 (1965).
- (370) C. O. Leiber and A. Weller, Chem. Ing.-Tech., 39, 563 (1967). See also P. Pollmann and A. Weller, Ber. Bunsenges. Phys. Chem., 77, 1071 (1973); H. P. Seidel and B. K. Selinger, Aust. J. Chem., 18, 977
- (371) C. O. Leiber, D. Rehm, and A. Weller, Ber. Bunsenges. Phys. Chem., 70, 1086 (1966).
- (372) F. Tanaka and J. Osugi, Rev. Phys. Chem. Jpn., 42, 85 (1972).
- (373) F. Tanaka, Rev. Phys. Chem. Jpn., 44, 65 (1974).
   (374) F. Tanaka, M. Sasaki, and J. Osugi, Rev. Phys. Chem. Jpn., 41, 18 (1971)
- (375) R. C. Neuman, private communication.
- (376) S. D. Hamann, private communication.
- (377) W. J. le Noble and K. Tamura, *Tetrahedron Lett.*, 495 (1977).(378) W. J. le Noble and T. Ushijima, unpublished observation.

- (379) Y. Torihashi, A. Itaya, and N. Mataga, Chem. Lett., 325 (1973).
  (380) U. Schindewolf, Angew. Chem., Int. Ed. Engl., 6, 575 (1967).
  (381) U. Schindewolf, R. Vogelsgesang, and K. W. Böddeker, Angew. Chem., Int. Ed. Engl., **6**, 1076 (1967).

  J. Jortner, J. Chem. Phys., **30**, 839 (1959).
- (383) F. Y. Jou and G. R. Freeman, J. Phys. Chem., 81, 909 (1977).
- (384) G. L. Bolton, M. G. Robinson, and G. R. Freeman, Can. J. Chem., 54, 1177 (1976).
- (385) R. R. Hentz, Farhataziz, D. J. Milner, and M. Burton, J. Chem. Phys., 46, 2995 (1967). (386) R. R. Hentz, Farhataziz, D. J. Milner, and M. Burton, *J. Chem. Phys.*, **47**,
- 374 (1967)
- (387) R. R. Hentz and R. J. Knight, J. Chem. Phys., 52, 2456 (1970).
   (388) R. R. Hentz and D. W. Brazier, J. Chem. Phys., 54, 2777 (1971)
- (389) M. Tanaka, S. Kaneshina, K. Shin-no, T. Okajima, and T. Tomida, J. Colloio Interface Sci., 46, 132 (1974).
- S. Kaneshina, M. Tanaka, T. Tomida, and R. Matuura, J. Colloid Interface Sci., 48, 450 (1974).
- (391) M. Tanaka, Yukagaku, 17, 148 (1968). A somewhat larger value for C<sub>12</sub> is given by S. Rodriguez and H. Offen, *J. Phys. Chem.*, **81**, 47 (1977). (392) M. Uena, *Rev. Phys. Chem. Jpn.*, **45**, 61 (1975); M. Ueno, M. Nakahara
- and J. Osugi, Rev. Phys. Chem. Jpn., 45, 9, 17 (1975); ibid., 47, 25
- (393) H. D. Lüdemann, E. Lang, and E. Westhof, FEBS Lett., in press

- (394) J. M. Rifkind and J. Applequist, J. Am. Chem. Soc., 90, 3650 (1968).
  (395) F. E. Karasz and J. M. O'Reilly, J. Phys. Chem., 71, 1159 (1967).
  (396) T. E. Gunter and K. K. Gunter, Biopolymers, 11, 667 (1972).
  (397) J. F. Brandts, R. J. Oliveira, and C. Westort, Biochemistry, 9, 1038 (1970).
- S. A. Hawley, Biochemistry, 10, 2436 (1971).
- (399) A. Zipp and W. Kauzmann, Biochemistry, 12, 4217 (1973).
- (400) U. Gaarz and H. D. Lüdemann, Ber. Bunsenges. Phys. Chem., 80, 607 (1976).
- (401) D. Pörschke and F. Eggers, Eur. J. Biochem., 26, 490 (1972).
  (402) K. Suzuki and M. Tsuchiya, Bull. Chem. Soc. Jpn., 44, 967 (1971).
  (403) M. D. Waissbluth and R. A. Grieger, Arch. Biochem. Biophys., 159, 639
- (404) T. M. Li, J. W. Hook, H. G. Drickamer, and G. Weber, Biochemistry, 15, 3205 (1976).
- (405) T. A. J. Payens and K. Heremans, Biopolymers, 8, 335 (1969).
- (406) A. Zipp, G. Ogunmola, R. C. Neuman, and W. Kauzmann, J. Am. Chem. Soc., 94, 2541 (1972).
- (407) H. Noguchi, S. K. Arya, and J. T. Yang, *Biopolymers*, 10, 2491 (1971).
   (408) G. Weber, F. Tanaka, B. Y. Okamoto, and H. G. Drickamer, *Proc. Natl. Acad. Sci. U.S.A.*, 94, 9194 (1972).
- (409) L. M. Krausz, S. Fitzig, and E. Gabbay, J. Am. Chem. Soc., 94, 9194 (1972)
- (410) S. J. Gill and R. L. Glogovsky, J. Phys. Chem., 69, 1515 (1965).
- (411) A. A. Lamola, T. Yamane, and A. Zipp, Biochemistry, 13, 738 (1974).
- (412) Y. Ohta, T. J. Gill, and C. S. Leung, *Biochemistry*, 9, 2708 (1970).
  (413) E. Schulz, H. D. Lüdemann, and R. Jaenicke, *FEBS Lett.*, 64, 40 (1976);

- see also A. Wishnia, Proc. Int. Conf. High Pressure, 6th, 1977, in
- press. (414) G. B. Ogunmola, A. Zipp, F. Chen, and W. Kauzmann, *Proc. Natl. Acad.* Sci. U.S.A., 74, 1 (1977).
- (415) G. B. Ogunmola, A. Zipp, and W. Kauzmann, Proc. Natl. Acad. Sci. U.S.A., 73, 4271 (1976).
- (416) B. B. Hasinoff, Biochemistry, 13, 3111 (1974); see also K. Suzuki, Y. Taniguchi, and K. Izui, J. Biochem., 71, 901 (1972).
- (417) E. F. Caldin and B. B. Hasinoff, J. Chem. Soc., Faraday Trans. 1, 71, 515 (1975).
- (418) R. C. Neuman, G. D. Lockyer, and J. Marin, J. Am. Chem. Soc., 98, 6975 (1976).
- (419) G. D. Lockyer, D. Owen, D. Crew, and R. C. Neuman, J. Am. Chem. Soc., 96, 7303 (1974)
- (420) R. C. Neuman, D. Owen, and G. D. Lockyer, J. Am. Chem. Soc., 98, 2982
- (1976). (421) K. O. Greulich and H. Ludwig, *Biophys. Chem.*, **6**, 87 (1977)
- (422) B. Andersen and P. E. Broe, *Acta Chem. Scand.*, **26**, 3691 (1972). (423) D. Pörschke and F. Eggers, *Eur. J. Biochem.*, **26**, 490 (1972).
- (424) G. N. Somero, M. Neubauer, and P. S. Low, Arch. Biochem. Biophys., 181, 438 (1977).
- (425) W. M. Neville and H. Eyring, Proc. Natl. Acad. Sci. U.S.A., 69, 2417 (1972).
- (426) L. M. Krausz, J. Am. Chem. Soc., 92, 3168 (1970); R. K. Williams and C. Shen, Arch. Biochem. Biophys., **152**, 606 (1972). (427) E. Morild, Biophys. Chem., **6**, 351 (1977) and J. Phys. Chem., **81**, 1162
- (1977).
- (428) S. D. Christian, J. Grundnes, and P. Klaboe, Appl. Spectrosc., 30, 227 (1976).
- (429) M. Y. Botnikov, V. M. Zhulin, L. G. Bubnova, and G. A. Stashina, Bull. Acad. Sci. USSR, Div. Chem. Sci., 204 (1977); M. Y. Botnikov, V. M. Zhulin, and I. K. Milyavskaya, ibid., 514 (1977); M. Y. Botnikov, I. K. Milyavskaya, and

- V. M. Zhulin, ibid., 517 (1977); M. Y. Botnikov, S. S. Zlotskii, V. V. Zorin, E. K. Kravets, V. M. Zhulin, and D. L. Rakmankulov, *ibid.*, 626 (1977). (430) S. Claesson, C.-M. Backman, I. V. Khudjakov, A. P. Darmanjan, and V.
- A. Kuzmin, Chem. Scr., 10, 143 (1976).
- (431) D. A. Palmer and H. Kelm, Aust. J. Chem., 30, 1229 (1977).
  (432) N. S. Isaacs, K. Javaid, and E. Rannala, Nature (London) 268, 372 (1977).
- (433) N. S. Isaacs and E. Rannala, Tetrahedron Lett., 2039 (1977).
- (434) N. S. Isaacs and K. Javaid, Tetrahedron Lett., 3073 (1977
- (435) W. L. Earl, F. K. Meyer, and A. E. Merbach, Inorg. Chim. Acta, 25, L91 (1977)
- (436) A. E. Merbach, unpublished observations. The temperature is not specified because the results are derived from the pressure effect on the coalescence temperature
- V. M. Zhulin and B. I. Rubinshtein, Bull. Acad. Sci. USSR, Div. Chem. Sci., 333 (1976).
- V. M. Zhulin and B. I. Rubinshtein, Bull. Acad. Sci. USSR, Div. Chem. Sci., 434 (1977).
- (439) V. M. Zhulin and B. I. Rubinshtein, Bull. Acad. Sci. USSR, Div. Chem. Sci., 2055 (1976).
- (440) B. S. El'yanov, S. M. Makin, and Y. E. Raifel'd, Bull. Acad. Sci. USSR, Div. Chem. Sci., 815 (1976).
- (441) V. M. Zhulin and S. I. Volchek, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1192 (1977).
- (442) O. C. Kwun and H. Lentz, Z. Phys. Chem. (Frankfurt am Main), 96, 177 (1975).
- (443) V. V. Avdeev, L. A. Monyakina, B. R. Churagulov, and Y. A. Kalashnikov,
- Russ. J. Phys. Chem., **50**, 1449 (1976). (444) V. V. Avdeev, B. R. Churagulov, and Y. A. Kalashnikov, *Russ. J. Phys.* Chem., 50, 1610 (1976).
- (445) I. Ishihara, Rev. Phys. Chem. Jpn., 47, 102 (1977).
- (446) S. Sawamura, Y. Taniguchi, and K. Suzuki, Chem. Lett., 823 (1977).