Activation and Reaction Volumes in Solution

T. ASANO and W. J. LE NOBLE*

Departments of Chemistry, Facuity of Engineering, Oita University, 700 Dannoharu Oita 870-11, Japan, and State University of New York,
Stony Brook, New York 11794

Contents
I. Introduction 407
A. Scope 407
B. The Basic Concepts 407
C. Notes Concerning Apparatus 409
Il. Activation Volumes of Organic Reactions 439
A. The Data in Tabular Form 439
B. Racemization and Related Reactions 439
C. Homolysis and Related Reactions 439
D. Bond Forming Reactions and Cycloadditions
of Neutral Species 440
E. Solvolysis 441
F. Bimolecular Nucleophilic Substitutions 443
G. Carbanion Reactions 443
H. Acid-Catalyzed Reactions 444
. Miscellaneous Organic Reactions 445
IIl. Activation Volume Differences 4486
A. The Data in Tabular Form 446
B. Competing Radical Reactions 446
C Competing Cycloadditions 4486
D. Miscellaneous Organic Reactions 4486
IV. Activation Volumes of Inorganic Reactions 457
A. The Data in Tabular Form 457
B. Isomerizations 462
C. Redox Reactions 462
D. Solvent Exchange 462
E. Other Substitution Reactions 462
V. Reaction Volumes 463
A. The Data in Tabular Form 483
B. Inorganic Acids: lonization Volumes 463
C. Carboxylic Acids: lonization Volumes 463
D. Phenols 463
E. Amines 463
F. lon-Pair Equilibria and Inorganic
Reaction Volumes 478
V1. Photochemistry and Related Processes 478
VIl. Biological and Biochemical Processes 480
Vill. Appendix 482
IX. References and Notes 485

I. Introduction
A. Scope

One of the dilemma’s facing the review writer in a field which
has been reviewed before is that comprehensiveness forces
those readers who saw the earlier article to leaf and scan to find
the new things, whereas a mere updating compels those who
did not see the initial writing to look it up in order to understand
the additions. The problem is especially acute if the same author
is involved in both stages, since he is apt to feel that his first
effort was so well done and is so widely known and remembered
that the mere referral to it will suffice.

The earlier comprehensive review was concerned, to all in-
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tents and purposes, with activation volumes only; it appeared
in 1967 and was presumed to be complete through 1966. A
thorough review on ionization volumes was published by Hamann
in 1974.2 Our objective here has been to present as complete
as possible a listing of both types of volume difference, between
those dates and the end of 1976; some 1977 data have become
available as well, and these were incorporated also. We realize
that the readability of our paper is somewhat limited by the
choice of these time slots, but the information available is now
50 great that total comprehensiveness is not really possible any
longer. To cope with this problem to some degree, we have
added a somewhat starkly written introduction.

The organization of the data differs a little from that in ref 1.
In that paper, the data were organized along strictly mechanistic
lines: homolyses, ionizations, bond deformation reactions, bond
formation—with and without concomitant formation of ions— and
s0 on. The thrust of the paper was to convince readers that an
excellent correlation exists between the activation volume and
the main mechanistic features. However, since this relation now
seems to be widely accepted and used, there is no longer any
need for such an approach; accordingly the present paper is
organized more along product lines. In other words, to mention
one example, cycloadditions appear together whether they are
concerted or not, and if the latter is the case, whether they in-
volve diradicals or zwitterions. In the text, these nuances are
pointed out, of course.

Beside the comprehensive data tables quoted above, several
reviews have appeared since 1966 which are more limited in
scope (though perhaps also more critical); among these there
are accounts dealing with physical organic chemistry,3-8
physical properties,® polymerization, 1° cycloadditions, 1" radical
reactions, '? inorganic processes, 34 and photoprocesses in
the solid phase.' Those who consider becoming actively in-
volved in the high-pressure business should also consult the
forthcoming Conference Proceedings of the NATO Advanced
Study Institute organized by Professor H. Kelm of the University
of Frankfurt a.M. in Corfu in the fall of 1977, they include lectures
on the basics of all types of spectroscopy of compressed sub-
stances, as well as the behavior of chemical systems at or away
from equilibrium.

B. The Basic Concepts
In any reaction in solution:
reactants (R) — transition state (¥) — products (P)

for which the rate law is known, one can in principle measure
the activation volume A V¥, defined by

AVvFE=vF — W, (1
The reaction volume, AV, given by
AV= Vp = Wy 2

© 1978 American Chemical Society 407



408 Chemical Reviews, 1978, Vol. 78, No. 4

can be determined regardless of the rate law.

We shall deal here exclusively with solutions and not with pure
liquids; it should be understood that all volumes referred to in this
review are partial volumes in the solvents and under the condi-
tions of interest. For convenience, we have therefore omitted
the bar over the V symbol which is customarily used to indicate
partiality. 16

The volume changes defined above can be determined by
making use of the fundamental thermodynamic relation

0G/dp=V )

Activation volumes are derived from the equation of absolute
rates:

AG* = ~RTIn kNW/RT (4)
which gives
AVF = —RTO In k/dp (5)
and reaction volumes from eq 6:
AG=—-RTInK (6)
which yields
AG= —RTO In K/Op (7

The activation volume can be measured in only one way, i.e.,
by means of the effect of hydrostatic pressure on the rate con-
stant and subsequent application of eq 5; the reaction volume
can be determined by either measuring the effect of pressure
on the equilibrium constant and applying eq 7, by dilatometry,
or by measuring the partial volumes of products and reactants
individually, and then properly combining them. It may be noted
from eq 1 that knowledge of both the activation volume and the
partial volumes of the reactants yields the partial volume of the
transition state alone. The volume is therefore one of the very
few properties of the transition state that can be accurately and
easily determined (the enthalpy of transfer!” might be considered
another). The partial volume of stable substances can be cal-
culated by extrapolating the apparent molar volume from the
densities of dilute solutions to infinite dilution: ¢

W=y d C

It may be noted here in passing that eq 5 was already known
to van't Hoff,1® and eq 7 to Planck;'® however, the modern in-
terpretation of A V¥ did not begin until the advent of Eyring's
theory of absolute rates. Pressure effects on rate constants
before 1935 were always listed in tables and never combined
in terms of a single result until then.

The question arises: why the stress on dilute solutions in de-
termining volume changes? Experience shows that such
changes are rarely much larger than 30 cm3/mol either way, and
inspection of eq 5 shows that, accordingly, k will change by only
a fewfold per kilobar of pressure. If we were to attempt to
measure the effect of such pressures on gas-phase reactions,
we would find that the resulting changes in rate would be so
much greater than those of the rate constant that it would
probably be impossible in most cases to extract the latter from
the overall effect. We also avoid (initially) pure liquids and even
concentrated solutions because uniess AV = 0, changes in total
volume and hence in pressure would occur during the reaction.
Even if one constructed a piezostat that automatically and
continuously adjusted the pressure, there would still be the
problem of a gradual change of medium and, accordingly, of the
activity of the reactant(s); the dissipation of heat evolved would
present a much greater difficulty, and so on. For these and other
reasons piezochemists work with dilute solutions, the more dilute
the better. It should be stressed that high dilution need not be an
important requirement in synthetic applications, however.
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Guggenheim?® and especially Hamann2 have pointed out
clearly and repeatedly that the application of eq 3 and 4 requires
the use of pressure-independent concentration units, such as
molal units, mole fractions, or moles per liter at one atmosphere,
and so on. These warnings are repeated here because the lit-
erature continues to produce examples of ‘‘corrections’™ made
to allow for the apparent fact that compressed solutions have
higher concentrations than those at atmospheric pressure. Such
corrections would be in order only if the solutions were prepared
(and hence if the concentrations were initially known only) at the
high pressures at which they are used; one should then have to
correct these numbers so as to produce the corresponding
values at atmospheric pressure. In fact, this of course never
occurs. The only situation calling for a correction and likely to
arise now and then is a reaction other than first order in which
spectroscopic analysis is carried out with a cell of constant
length and hence pressure-dependent average cross section,
since the number of molecules in the light beam is increased
then.

A continuously recurring problem with eq 5§ and 7 is that the
theoretical relations between k and p, and K and p, are not
known, and hence that the slopes must be obtained in an em-
pirical manner before A V¥ and AV can be calculated. These
theoretical relations are certainly not linear ones, and although
linear behavior is sometimes indicated over modest pressure
ranges, the fact is that A V¥ and AV are always pressure de-
pendent. We will briefly discuss these related problems; first,
how to get the slopes.

Various methods have been proposed and used. Perhaps the
most realistic method, in view of the empirical nature of the
objective, is the graphical method. 1€ The alternative is fitting by
least squares'® to some equation having roughly the correct
characteristics for the data at hand. These data may portray
either positive or negative slope (A V¥ and AV may be either
negative or positive, respectively), but they always tend to level
off at high pressure; i.e., AV¥F and AV tend to zero at high
pressures. There are, of course, many equations that mimic this
behavior, but in order to be suitable for use, the number of ad-
justable parameters should be minimal. Among all the equations
proposed and used, perhaps the most popular is the parabolic
one

ink=a+ bp+ cp? (8)
so that then, at p =0
AVF = —pRT @)

The advantage of eq 8 is the simplicity of the arithmaetic; the
weak point is that its shape (with a maximum or minimum) is not
realistic, and especially if data over a wide pressure range are
avaifable, the fit may be poor and the absolute magnitude of A V¥
or AV is likely to be underestimated.

There are also a number of semiempirical equations that have
been proposed; these have in the main been based on the Tait
equation

Yo~ Yo ¢og <1 + B) (10)
Vo B
which almost perfectly describes the behavior of water over
modest pressure ranges and for which there is some theoretical
justification.?’ The assumption is that the Tait equation is also
valid for the components of the solution at hand, and for the
transition state as well. Earlier debates about this question have
been quoted elsewhere,! and It has remained of interest;22:23
however, the authors agree with Whalley2* and Hyne2 that with
our lack of theoretical understanding and with the precision
available, graphical methods and/or eq 9 are the best methods
available. One alternative that has not been considered is eq 11,
which has the same number of parameters as (8) but is suffi-
ciently more flexible that it may avoid the underestimation of
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AVF atlow pressures that so uniformly results from the use of
eq 8. Equation 9 would not be changed, except for the value of
b.

nk=a+ bp+ cp® (11

The second and related point is that since AV* and AV are
pressure dependent, we need to agree on the pressure to which
“the’’ activation and reaction volumes shall refer. The choice
has universally been that of zero pressure, and it is understood
that throughout this paper A V= and AV are intended to mean
AV,¥ and AV,, which differ by immeasurably small amounts
from the values at atmospheric pressure. The reasons for this
are that these volumes can then be correlated with all other
known facts about the reaction or equilibrium, which also virtually
always are available for atmospheric pressure only, and fur-
thermore, that reaction volumes derived from partial volume
measurements are likewise known only at atmospheric pressure.
There is unfortunately one small problem with this convention,
which is that the pressure range ends at zero, and hence that
the error in estimating A V¥ or AV from high-pressure data is
maximized. From this point of view, data at ¥, or 1 kbar (A Vit
AVy, etc.) might have been preferable, but it is too late for
that.

The curvature in the log V vs. p plots, of course, provides
additional information, and this may be relatable to the com-
pressibility of the transition state; perhaps Gay has made the
most progress in this direction.2® Small temperature effects on
the activation volume have been found by numerous workers,
most notably by Hyne.?” That these small effects are measurable
to reasonable accuracy was demonstrated by Kelm,28 who found
that the Menshutkin reaction of triethylamine with ethyl iodide
in acetone in the range of 0-3 kbars and 20-50 °C closely
obeyed the Maxwell relation

B0, (),

El'yanov2-33 has treated the problem of calculating A V* and
AV if only high-pressure data are available. His analysis is based
on the reasonable assumption that similar reactions will have
the same curvature.

As noted before,* a minimum or inflection point in the In k vs.
p curve is indicative of competing pathways with different ac-
tivation volumes. An example was recently described by
Tiltscher,®* who found that the Friedel-Crafts propylation of
benzene with propene, catalyzed with ferric chloride, in nitro-
benzene solution exhibited a minimum. The competing mech-
anisms have not yet been sorted out.

Still another theoretical point of interest, first proposed by
Walling,3® is the pressure-induced transition state progression
along the reaction coordinate. A possible example has been
claimed by Fujii,3¢ who deduced from the pressure coefficient
of the rate constant of the HCI catalyzed Orton rearrangement
of N-chloroacetanilide that the Ci-Cl distance in the transition
state increases from 2.5 to 3.5 A between 0 and 2 kbars, but this
conclusion has been disputed.®” Another possible case has been
described by Libby,%8 who found that solid phase dimerization
reactions of anthracene at 58 kbars proceed more rapidly at low
temperature than at high, and who refers to the ‘‘negative acti-
vation enthalpy’’ of the reactions. These conversions, however,
require initiation by means of high-energy irradiation; the
mechanisms-—indeed, the products—have not been established
with certainty, and it is not clear that Libby’s conclusion is in-
disputable.

In the earlier review,! mention was made of the possibility of
making use of the internal pressure®® of liquids to estimate A V¥
of reactions occurring in them (p 230 ff). This suggestion, in one
form or another, has been revived by several authors;*0-44
however, the data so generated have not been included here.
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TABLE I Factors In the Estimation of AV,*

Mechanistic feature Contribution, cm®/mol

Bond cleavage +10
Bond deformation ~0
Bond formation =10
Displacement -5
Diffusion control >+20
Cyclization ~Q
lonization -20
Steric hindrance (=)
Neutralization +20
Charge dispersal +5
Charge concentration -5

As yet, there are so few demonstrated examples of activation
volumes determined in both ways that one can be confident of
the solvent-variation method; furthermore, it is rather ques-
tionable on many grounds whether reactant molecules are in-
deed not subject to influences from the solvent host other than
a pressure equal to its internal pressure. Neuman*S has justly
criticized such methods for media other than hydrocarbons. Our
own attitude is that the assumption is justified only if the reaction
can be made to take place in the gas phase, and then at a rate
predictable from the known activation volume and the internal
pressure of the solvent in which AVF was measured.

it is desirable to mention here two important strides forward
in the determination of partial volumes. One of these is the tuning
fork pycnometer (densimeter),*® in which the density of the
solution of interest is deduced from the natural frequency of a
tuning fork filled with the solution. This allows much more rapid
and more sensitive determination of densities than conventional
pycnometers. The second innovation is the determination of the
partial volume of individual ions from ionic vibration potential
measurements;*7 up till then, these volumes could only be
measured for pairs of ions of opposite charge, or as differences
of ions of like charge. Useful reviews of partial volumes are
available for organic compounds in water*8 and for electro-
lytes;*? references 1o and a discussion of the volume of mixing
have been provided by Brower.5¢

Table | appeared also in ref 1; it is a useful summary of all
known data. In applying it, one should be aware that these
numbers are no more than averages, and that especially the
entries involving ions are strongly solvent dependent.

C. Notes Concerning Apparatus

Important progress has been made in recent years in the
marriage of high-pressure equipment with conventional kinetic
techniques so that reactions of much greater speed can now be
studied under pressure. Among these innovations may be
mentioned Eckert’s high-pressure mixing apparatus,5! which
allows the mixing of reagents at will after the heat of compres-
sion has dissipated, and hence the study of reactions which are
over in a matter of minutes; it should be easily extendable to
high-pressure quenching as well. Other steps in this direction
are provided by Brower’s high-pressure p-jump design,5? the
high-pressure T-jump apparatus described by Grieger,5® Hasi-
noff,54 and Jost,54 the NMR high-pressure probe by Yamada,?®
Jonas,5¢ and by Merbach,%¢ the ESR probe of Schaafsma,57
Heremans’ high-pressure stopped-flow apparatus,5® and Caldin’s
flash photolysis equipment.® Moriyoshi has described a new
continuous technique of following high-pressure reactions based
on the pressure drop;®° the topic of spectroscopy at high pres-
sure has been reviewed by Ferraro and Basile.®"

The most recent stage in the never-ending cycle of revisions
and renamings of units is recorded in the opening pages of the
Australian Journal of Chemistry of 197752 the pressure unit is
now the pascal, defined as 1 N/m2 (N = newton). In the past
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decade most chemists active in the field had become used to
bars and kbars; since virtually all data reviewed here were
published in those units, we continue to use them here. The
conversion is trivial: 1 kbar = 0.1 GPa (gigapascal).

Hl. Activation Volumes of Organic Reactions
A. The Data in Tabular Form

Comments on the information in Table Il are in the following
sections on the more important and interesting cases; some
individual entries are skipped in the narrative if the mechanism
is unknown, or if the information is of a routine nature.

B. Racemization and Related Reactions (Entries
1-13)

Brower®5® has found that the racemization of tert-butylsulfo-
nium cation has a positive activation volume of 6.4 cm3/mol,
consistent with dissociation into and recombination of tert-butyl
cation and the sulfide. Sulfoxides appear to racemize by simple
inversion, with zero volume requirements. The exception is a
benzyl sulfoxide; dissociation (homolysis) is indicated in that
instance, though it seems likely that the high temperature (hence
expanded solvent) contributes to the large value of A VoF.
Somewhat surprisingly, the allylic sulfoxide is almost indifferent
to pressure; this was attributed to a concerted [2,3] sigmatropic
shift, but with a transition state looser than is common in such
reactions.

The biphenyl racemizations reported by Plieninger®* are ap-
parently subject to incredible accelerations by pressure; the
volume decrease is virtually that of the entire molecule. Such
a decrease is conceivable if the reaction involves ionization of
the acid {in toluene, at 90 °C) as a necessary first step. On the
other hand, that seems hardly likely since a solvated carboxylate
group is surely not smaller than carboxy!. Close, known analogs
of these reactions reviewed elsewhere ' are known to be virtually
pressure independent, and it seems desirable that these studies
be repeated and the results confirmed.

The data obtained by Lidemann®® are a consequence of the
advances in technology mentioned above. The rotation of the
C-N bond in dimethylacetamide must surely involve loss of the
resonance-induced dipole, and the pressure inhibition is rea-
sonable on that basis (see eq 13). The inversion of cyclohexane
involves no such change of dipole, and the activation volume
is close to zero.
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C. Homolysis and Related Reactions (Entries
14-56)

A great deal has been learned about homolytic bond scission
under pressure in the past decade or so, principally through the
work of Neuman. As he has pointed out in many papers and in
his review, ' the products through which we become aware that
bond scission has occurred arise through several competing and
successive steps, which may be symbolized as in eq 14. This
scheme brought order to what is otherwise a bewildering variety
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Ky« « k . .
A—B <kr’2 (A, B) —~> A+B— escape products (14)
-1
\-k—°> cage products

of activation volumes in free radical decomposition reactions.
The following assumptions are made: (a) that the transition state
in the bond fission process is early, at least so far as the ge-
ometry of the breaking bond is concerned, and hence that the
activation volume is small (of the order of 4-5 cm3/mol); (b) that
the activation volume for diffusion is relatively large (of the order
of 10 cm3/mol); (c) that diffusion from the cage is irreversible;
(d) that the first step may have a polar component, i.e., that the
approach to the transition state may be characterized by a
change in dipole moment; (e) that in molecules capable of two
or more bond scissions, the resulting fragmentation may or may
not occur concertedly, and that if it does, A V¥ will be less
positive than if it does not. The concerted reaction is assumed
to be irreversible. These generalizations work out in the following
ways.

When tert-butyl phenylperacetate and perbenzoate are
compared, the large difference in A V¥ (about 1 cm3/mol for the
former and 10 for the latter) is thought to be due to concerted
two-bond scission in the peracetate, and stepwise reaction in
the perbenzoate:%°

PhCH,CO3-t-Bu — PhCH, + CO, + +-BuO-
PhCO;-t-Bu — PhCO,- + -BuO-

Dipolar character of the first of these two transition states,
Ph-CH, 9. -CO,- - -O~%-t-Bu, is partly responsible for the very
small value; thus, in reaction 15 A V¥ is found to be +4 cm?/

mol.%¢ Similar values obtain in the case of azo compounds, and
Neuman was able to correlate his rate studies with product
distributions; thus, the formation of products arising from sub-
strate and radical scavengers generally has a A V= value of about
+10 cm3/mol or more, whereas cage products have A V* values
of about +5 cm3/mol. The decomposition of N-(1-cyanocyclo-
hexyl)pentamethyleneketenimine has an activation volume of

(Dremf)

CN

5 cm3/mol in chlorobenzene and gives rearrangement products
only; in cumene, escape products become important and A V¥
= +13 cm3/mol.”® Among cyclic azo compounds, the six- and
seven-membered rings open concertedly with AVF = 55
cm®/mol; the eight-membered analog opens stepwise, as sug-
gested by the appearance of relatively large amounts of trans
hydrocarbon product, and A V¥ is now +7 cm3®/mol.”” It is ob-
vious in any case that with the complex scheme operating in
these reactions, both rates and product distributions under
pressure provide valuable information, but this cannot be re-
produced here in all detail for all cases, and the interested reader
must be referred to Neuman's review'? and other publica-
tions,56-78

The decomposition of «,a’-azobisisobutyronitrile under
pressure has been discussed in similar terms by 0go.”® The
rather large value of A V¥ in cyclohexane was ascribed to the
unusually large value of the same parameter for viscous flow
in that solvent; evidently a relatively large cavity must be created
in this medium to permit diffusion.

The xanthate elimination studied by Eyring®° has an activation
volume of +12.3 cm3/mol, a value consistent with much bond
breaking in the transition state as might be expected from such
a fragmentation:
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The very large pressure-induced acceleration of the aroma-
tization of hexamethyl(Dewar benzene)®' is at present a major
mystery. The volume decrease (—35 cm3/mol) is well over
one-third of the volume of the aromatic nucleus; clearly no mere
rearrangement could produce this. It is conceivable that the
transition state has dipolar character, but it is certainly not ex-

+

pected. Repetition of the measurement and other mechanistic
studies are in order. The dioxetane decomposition of tetra-
methyldioxetane was studied by Kelm,%? with measurements
based on the chemiluminescence of that reaction. It proved
difficult to extract A V= from the data, and the result of about +10
cm3/mol could not be interpreted with certainty in terms of the
hotly debated question concerning the stepwise or concerted
nature of the reaction (the authors favored the concerted
mechanism); thus, this case illustrates the experience so often
gained with other techniques that no approach is fully reliable
if analogs with known mechanism are unavailable.

The decomposition of ethylcyclobutane®® at 410 °C at ni-
trogen pressures to 2 kbars is one of the few carried out in the
gas phase. There are no stereochemical features in the molecule
that hint at the mechanism; the result chiefly confirms that the
absolute values of activation volumes tend to be larger at higher
temperatures.

D. Bond Forming Reactions and Cycloadditions
of Neutral Species (Entries 57-156)

One-bond-formation processes not involving ions are rela-
tively rare, at least in tables of pressure effects, but what little
there is proves interesting. The simple combination of radicals
has been studied in the termination step of polymerizations, and
it was reported—and now confirmed by Ogo8®—that A V¥ is
quite large and positive.! To account for this result, at first
seemingly so surprising, it was noted that this step is almost
certainly diffusion controlled, and that the diffusion steps through
the increasingly viscous medium must surely be pressure in-
hibited. An example is now known in which two radicals, created
together in a cage, combine; the A V= for this process is —4.2
cm®/mol.”® This is of the right order of magnitude; however, it
should be remembered that for a process such as this, in which
the activation barrier must be small or even zero, the transition
state theory may not be valid (since there is then no equilibrium
between initial and transition states, a condition essential in the
derivation of eq 4). That is not to say, of course, that there is no
pressure effect, only that the transition state formalism may not
be suitable to represent the results.

The propagation step in several free-radical polymerization
reactions has an activation volume averaging around —22
cm®/mol. This rather large contraction is likely the result of the
large volume requirement of the 7w bond; the presence of a
double bond is known to necessitate a large correction in par-
achor calculations,’

Cycloadditions under pressure have become a fruitful area
of research, largely as a result of work by Eckert and his co-
workers. Walling had previously claimed that A V¥ was too small
in comparison to A V for a concerted nature of the Diels—Alder
reaction and that singlet diradicals must be involved;' however,
Eckert?1:92 showed that AV¥F/AV was far in excess of 0.5 in
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several cases examined with great care, and hence that the
reaction must be concerted. Certain caveats are possible, of
course. Thus, a two-step reaction with the second step rate
controlling would also produce this resuit; however, this as-
sumption would be at variance with the clean stereochemistry
of the reaction. Intermediate diradicals would not be expected
to return to the initial state molecules in the same configuration
if a rapid preequilibrium occurred.

Several results stand out when the list of Diels—Alder reactions
is scanned. One of these is that there are at best only small
solvent effects such as would be expected if these reactions
were two-step sequences with a zwitterionic intermediate; this
is an important consideration because an ionic contribution
would obviously also be able to account for large negative ac-
tivation volumes. In one instance, the cycloaddition of maleic
anhydride to 1-methoxy-1,3-butadiene, a somewhat larger sol-
vent dependence can be discerned; in this case a contribution
from charge transfer between the two partners, so different in
electron wealth, may have contributed.

A second observation of great interest is that AVF/AV in
several cases exceeds unity. Eckert®? has attributed this to
secondary orbital interactions, a feature which provides an at-
tractive force between atoms in the transition state which must
recede at least to van der Waals distances again in the product.
In support of this notion, he points out that this remarkable
AV#/AV ratio is common in those cases in which such inter-
actions are geometrically possible, but they are not observed
with such dienophiles as acetylenedicarboxylates (see eq
16).

A 16
O()

A third feature is concerned with the remarkable contrast
between volume and energy descriptions of the Diels-Alder
reactions. According to the volume criterion, one should have
to describe this reaction as having a very late transition state:
the nuclei are already at or very near their final positions. On the
other hand, the Diels—Alder reaction is considered by physical
organic chemists as a textbook case of an early transition state;
this is deduced from the facts that activation energies are very
small and that the reactions are highly exothermic. Actually these
descriptions are not really at variance; the volume is a criterion
for the nuclear positions, and the energy is principally a measure
of the electronic progress of the reaction. One may picture the
Diels—-Alder reaction as one in which it is necessary for the nuclei
to approach their final places closely before the electrons will
flow to theirs. In this connection it should perhaps be pointed out
that the AVF/AV > 1 criterion does not prove the operation of
secondary orbital interactions; it is conceivable that the electrons
will simply not flow unless the atoms to be bound have first
bounced to within single bond length of their partners to be.

One important piece in this puzzie is still missing: there is as
yet no example of a retro Diels—Alder reaction in which secon-
dary orbital interactions force endo stereochemistry. In such a
reaction the activation volume should be negative. This would
be a remarkable result: a reaction in which two bonds are
breaking, and with yet an initial volume decrease. Such an ob-
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servation would provide important support because the very
large, negative activation volumes in the forward direction are
notoriously difficult to measure precisely.

The [4 + 6] cycloaddition of tropone to cyclopentadiene is
an instructive example in piezochemistry. 192 The reaction is a
close analog of the Diels—Alder reaction in that it is symmetry
allowed, though with exo stereochemistry. The activation volume
is only —7.5 cm3/mol, and on that basis alone it would surely be
deduced that the reaction proceeds in stepwise fashion; how-
ever, the equally small reaction volume (—4 cm3/mol) shows
that the reaction is concerted. Measurements of the individual
partial volumes of all three species participating in the reaction
show that the reason for the unexpectedly small volume changes
is the remarkably small volume of tropone, which can be at-
tributed to its dipolar nature.

(O — O

Very different behavior is indicated by the high-pressure re-
sults for the {2 + 2] cycloadditions. Here again, A V¥ is very
large and negative, but now for a different reason. The reaction
occurs in two steps, via a zwitterionic intermediate as is indi-
cated by lack of stereospecificity, solvent effects, and trapping
experiments. 195 Electrostriction thus is responsible for the smalll
volume. This explains the solvent sensitivity of A VF (as well as
a large, negative A V* for the reverse reaction listed in section
1.

As yet there have been no reports of pressure effects in al-
lowed, antarafacial [2 + 2] cycloadditions, in stepwise [2 + 2]
cycloadditions proceeding via diradicals (the competition of one
such reaction with a Diels—Alder reaction under pressure has
been described; see section Ill).

The very substantial pressure-induced rate increases in all
manner of cycloadditions have attracted the attention of synthetic
chemists as well. There are instances in which the avoidance
of high temperature was achieved, 1% others in which pyrone %7
and even benzene 98 become involved in Diels—Alder reactions,
and one'°? in which a pressure-stabilized intermediate (a sty-
rene-TCNE adduct) is obtainable in such high concentrations
at 8 kbars that it is directly observable. Dipolar [2 + 3] cy-
cloadditions can also be carried out at high pressure with great
advantage in yield; sometimes changes from 0 to 100% are
effected! Examples include diazomethane'!% and nitronic es-
ters. 111

E. Solvolysis (Entries 157-435)

The large number of available data makes it somewhat difficult
to organize them in a satisfactory way. The activation volumes
are subject to relatively small structural effects (including leaving
group effects) superimposed on sometimes much larger solvent
effects. The temperature also causes fluctuations, and since
there are, of course, variations in precision and accuracy, the
impression one gets from a first inspection does not inspire much
confidence. Our organizing principle has been as much as
possible to group together those data which allow a single
question to be considered, even though in several instances this
leads to the same reaction being entered in several places.

Perhaps the largest single effect is the solvent composition
when one of the components is water. At first glance, there
seems to be a bewildering series of variations in the A V¥ of
solvolysis of benzyl chloride in aqueous solvents. Closer in-
spection, however, uncovers several interesting features. First
of all, there is in most instances a maximum in the value of
(—AV*). This maximum is in most cases close to pure water,
and the approach to the maximum from the pure water end of
the solvent spectrum is very steep; thus, at 50 °C in pure water,
AVF is about —10 cm3/mol, but with 5 mol % t-BuOH present,
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AVF is already —25 cm3/mol. Similar though less drastic effects
occur with other organic cosolvents, at other temperatures, and
with other substances. The variations on the organic side of the
maximum are much smaller; thus, with dioxane, water content
variation from 10 to 36 mol % has no discernible effect at all.
Partial molal volume measurements have shown that a major
part of these variations is due to the initial states; i.e., to the
substrates. 2 These data therefore reveal more about the sol-
vent mixtures than about solvolysis or its pressure dependence.
As is well known now, water is a highly structured solvent; the
introduction of small amounts of solvent often brings about
drastic alterations in this structure, and large effects on the partial
volume of the solute are the result. The solvent effect on V of
the transition state alone in the aqueous medium resembles that
of inorganic salts.’1?

This information led Whalley to consider the difference in
activation energy for solvolysis at constant pressure and at
constant volume; 28 he concludes that the variations so often
seen in agueous mixtures as a function of composition are much
smaller if the constant-volume parameter is used. Along the
same lines, if the cosolvent considered is glycerol, which has
thermal expansivity nearly independent of added water, the
extremum behavior virtually disappears.12® Whatever use can
be made of these arguments, one conclusion is clear: if one is
going to study structural effects, water or highly aqueous solvents
should not be used.

There are several sets of data which show that A V¥ is also
temperature dependent. In most instances, A V¥ becomes more
negative in solvolysis at higher temperatures, which is not sur-
prising since both the density and the dielectric constant de-
crease as the temperature is raised. The temperature coefficient
of AVF of benzyl chioride hydrolysis in pure water is surprisingly
large near 0 °C; perhaps this is related to the abnormal behavior
of the coefficient of thermal expansion in that range. The two
sets of data for isopropy! bromide in water have contradicting
trends, and one of these must be wrong. In any event, these
variations further diminish the value of structural comparisons
that one might otherwise have been able to make.

The first set of data in this group that seems to have true
structural information is that gathered by Sera et al.'3% at 25 °C
in acetone containing only 11.5 wt % water; it concerns the
hydrolysis of cumyl chlorides. The data correlate crudely with
o™; the slowest of these chlorides seem to solvolyze with the
most negative activation volumes. This is what would be ex-
pected if the Hammond postulate were applied to the series;
unfortunately there appears to be no independent evidence that
this is valid.

One of the reasonable suppositions one can make about A V*
for solvolysis is that it should be sensitive to steric factors; thus,
if approach to the ionic sites is hindered, solvation might suffer
interference and A V¥ would be less negative.

Inspection of the available data does not support this line of
reasoning; the solvolysis in aqueous alcohol (20 vol % water)
of benzyl chlorides does not show pressure effects that can be
said to fluctuate abnormally because of o-methyl, isopropyt, or
even tert-butyl substitution.'3' The formolysis and methanolysis
of secondary tosylates under pressure are at best barely affected
by even the most extreme alkyl crowding. 32 In cyclohexyl de-
rivatives, A V¥ is if anything slightly more negative if the leaving
group has to depart in the axial direction, nor are any effects
visible in the solvolyes of 2-adamantyl or endo-2-norbornyl
tosylates.3® How does one explain it?

We should probably not consider the alkyl groups as hindering
solvating molecules any more than we view the first solvent shell
as hindering the second. The alkyl groups simply become part
of the solvent shell, which because of its low dielectric constant
furthermore efficiently transmits the electric field to be felt by
solvent molecules outside. We should perhaps be reminded that
AV, is very large in nonpolar media.
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The lack of sensitivity of A V¥ to steric influences is actually
a fortunate circumstance, because it allows us to use the acti-
vation volume as a criterion to judge the likelihood of partici-
pation; it is well known that steric hindrance to ionization is often
brought up as an alternative to participation to explain rate ratios
and stereochemical discrepancies between epimers. Following
our initial demonstration of the effect of charge delocalization
on A V¥, several additional instances have come to light. Sera’s
study of pheny! participation is an impressive case in point.134
He was able to measure A V¥ in formolysis of a number of
para-substituted phenylethyl tosylates and, on the basis of de-
viations from the Hammett plot, calculate A V¥ for both the
solvent- and phenyl-assisted rates. The data show that A V¥ g
decreases from —7 to —13 cm3/mol as the electron-donating
methoxy substituent is changed to nitro; careful data dissection
furthermore shows that, even with methoxy, a very minor un-
assisted pathway with a AVF of —13 cm3/mol is contributing.
Since the reality of phenyl participation is now conceded by all,
this demonstration thus provides a powerful shot in the arm for
the original claim that pressure effects could provide such a
criterion.

Possibly an even more dramatic case had been recorded
earlier with a para oxide substituent; in that case participation
leads not to ionization but to electron transfer through the ring
to the carbonium ion site, and A V¥ is reduced from —20 to — 1
cm®/mol! Even a much more distant phenyl ring can be effective
under such circumstances: 4-p-oxidophenylbutyl tosylate pro-
duces tosylate ion with AVF = —5.4 cm3/mol.'35

Less success has been achieved so far in discerning from the
activation volume to what degree the solvent is active as a nu-
cleophile, or displacing agent, apart from its solvating role.
Especially with unstabilized and/or unhindered cations it might
be supposed that the solvent would engage in bonding to the
cationic site, and that this should lead to contraction relative to
cases in which such bonding is either geometrically impossible
or energetically not necessary.

The evidence is somewhat conflicting. There is virtually no
difference in A V¥ of the methanolyses of ethy! chloride and
tert-butyl chloride. Sera reports'3® that methyl and isopropyl
tosylates have increasingly negative activation volumes as the
solvent is varied to a more nucleophilic one (formic acid to
aqueous acetone to methanol), but 1- and 2-adamantyl tosylate,
in which such bonding is geometrically not possible, also show
this behavior. Additional information is needed here.

High-pressure measurements have provided a satisfying
answer to the problem of how to distinguish concerted ionogenic
fragmentation from stepwise analogs.'#° This is not to say that
there is no alternative answer to the question: thus, Grob had
noted 4! that rate accelerations up to 5 X 104 occurred in the
fragmentations of many -y-haloamines compared to the carbon
homomorphs, where inductive retardation should have been
expected if the mechanism in the former had been analogous
to that of the latter:

R R
R\\me slow, R\\N/\/ . X

—> products

R R
R\\CMX slow R\\C/\/»f X
! }
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On the other hand, the haloamines produce fragmentation
products even when the inductive effect outweighs the driving
force of concerted reaction, and hence there is no way to tell
where the limit lies.

The high-pressure criterion is simple: in a concerted frag-
mentation one may expect that the effect of the extra breaking
bond will reduce the pressure acceleration. In the event, in view
of the enormous spread in rates, it was necessary to resort to
differences in leaving group and temperature; however, com-
parisons with known compounds allowed small corrections for
these changes to be applied. Table Il only shows the observed
A VF values; for the calculated ones corrected to a common
temperature and leaving group, one should consult the original
papers. A single example may suffice here (eq 17). The entire

Y

Me,N" Y "NMe,
- —> P Av*=-105cm3/mol
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Me,CH Me,CH
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group of data in that paper may be summarized by Avc* =
—21.5 £ 1.8 cm®mol; AVy¥ = —13.3 & 2.0 cm?/mol. There
is one amine which falls outside that limit; for

mwe
Cl

This amine also happens to be the slowest, slower by a factor
of 8 than the carbon homomorph. Ciearly, the inductive effect
operates to its full extent here, there is no concertedness, and
the reaction proceeds stepwise to the fragmentation prod-
ucts.

Solvolysis and the pressure effect on it have been used to
advantage by Colter'42 to demonstrate charge-transfer catalysis.
The transition state of acetolysis of 9-(2,4,7-trinitrofluorenyl)
tosylate is reduced by about 5.5 cm3/mol in size if 9-meth-
ylanthracene is present; this figure is in good agreement with
equilibrium data for charge-transfer complexation. it is consid-
ered to be a 10-cm? volume decrease, tempered by a 5-mL in-
crease due to delocalization.

The linkage isomerization in benzhydryl isothiocyanate and
its competition with solvolysis give important information about
charge separation, 43 The former reaction surely occurs within
the tight-ion-pair stage, and the latter within the loose stage. The
difference is 4 cm3/mol. We may compare this value with
equilibrium data obtained in ion-pair studies in nonpolar solvents
(see section V).

The decomposition of tert-butyldimethylsulfonium salts'44
stands in interesting contrast to the other solvolysis data in that
the charges are already there, and delocalization in the transition
state will if anything reduce electrostriction. The activation
volume is large and positive.

This series of data ends with information on the hydrolysis of
acyl chiorides, in which the rate-controlling step combines the
features of ionization and conversion of a carbonyl carbon into
a tetrahedral atom (eq 18). The iarge contraction that occurs may

v*=-238cmd/mol
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be explained in that way. The data parallel those of solvolysis
of simple halides in that A V¥ is again strongly dependent on the
composition of the aqueous solvent: it varies from —30 cm3/mol
in THF containing little water to about =10 in pure water. With
MeSO.Cl, virtually no differences are observed between H,O
and D,0; this is an example of the fact that transition states as
well as normal molecules only rarely have measurably different
steric requirements upon isotopic substitution.

Mention should be made here of several qualitative results
obtained by Okamoto. 48 He finds that the application of 5 kbars
on the solvolysis reaction has quite drastic effects on the product

Ph Ph Ph Ph
Ph—C—CH,Cl — C—CH,Ph + ==

/

Ph Ph OR Ph (19)
ratio, the substitution product being favored over the olefin, as
might be expected. The same result obtains if base is present;
under those conditions the unrearranged alkoxy compound is
also formed, but in decreasing yield as the pressure is raised,
in agreement with expectation since Sy1 solvolysis invariably
has a more negative activation volume than ionic Sy2 substitution
(cf. also the following section).

F. Bimolecular Nucleophilic Substitutions
(Entries 436-535)

The Menshutkin reaction has continued its role in the limelight
of piezo chemistry. This is for obvious reasons: because of the
combination of displacement and ionization features, it is subject
to large pressure effects, and in spite of its ionic nature, it can
be carried out in even highly nonpolar solvents; it obeys clean
second-order kinetics and is believed to have simple least motion
characteristics with an early transition state.

The data pertaining to the influence of solvent are unfortu-
nately for the most part not usable, since they were ‘corrected”
for compressibility; in most of these cases the magnitude of the
alterations are of the order of 10% or so. This introduces a
systematic error which may in some cases overshadow the
solvent effects. Nevertheless, it is clear that there are real sol-
vent effects, and that they are roughly predictable on Drude-
Nernst grounds: —A VF is largest in hexane, and smallest in
methanol, nitrobenzene, and so on. The pressure accelerations
increase with increasing temperature, and vary in capricious
ways with composition in mixed solvents.

The Menshutkin reaction and its sensitivity to pressure have
provided the means for experimental support of the Hammond
postulate, a principle often used by kineticists to rationalize
comparative rate data. The principle as used by most chemists
states that when two reactions of the same sort differ signifi-
cantly in exothermicity, the one liberating the most energy will
have the earlier transition state. It is often used in conjunction
with the principle of Polanyi according to which that reaction will
also be faster (have a lower barrier).15°

When we compare the reactions of 2,6-dialkylpyridines with
alkyl iodides, 87 we find that the rates are greatly depressed by
increases in size and branching of either alkyl group. This then
should mean that increases in hindrance are raising the barrier
and shifting it in the direction of product. Gonikberg® has ex-
plained the increasingly negative A V¥ values in terms of over-
lapping, or interpenetrating groups; however, relatively facile
bond bending and hard-sphere characteristics are now such a
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well-established part of the scene that this explanation does not
satisfy, and the Hammond postulate provides a much better ra-
tionale. 80 It has been found that neither the pyridines nor the
pyridinium salts have large volume abnormalities; when the A V*
values for these reactions are compared with AV, one observes
that the ratio A V¥F/AV steadily increases as the hindrance is
raised. Thus, we regard the special pressure acceleration of
highly hindered Menshutkin reactions as simply a manifestation
of the Hammond postulate.

Several additional comments are of interest here. For one,
this expianation has received further support in that if methyl
chloride is used, one observes'®! a measurable increase in the
chlorine 35/37 isotope effect between pyridine and 2,6-Iutidine;
for another, an independent estimate by Kondo %% has led to a
value of 20-40% charge development in the benzylation of
pyridine, in rough agreement with our estimate for the methyl-
ation. These estimates explain why the activation volume of the
Menshutkin reaction is so much more sensitive to steric hin-
drance than that of the superficially similar solvolysis reaction;
the latter has a very late transition state, and the application of
pressure cannot make it much later. Finally, it is perhaps
worthwhile to emphasize just how great the effect is; for in-
stance, 2,6-di-fert-butylpyridine is ordinarily not methylated at
all, but even at 5 kbars the reaction is rapid. 162

The other data are all for ionic displacement reactions. Pre-
viously known listings generally reported A V¥ for such reactions
in the range of 0 to —10 cm3/mol, and hence there are few
surprises here. One item of interest is the large value of —24
cm?3/mol when lithium chioride is used in acetone. This is due
to the fact that the ion pairs or clusters must first dissociate (see
Appendix); it warns us that uncritical conclusions from S\2 re-
actions of this sort are fraught with danger. Another point of in-
terest is Ewald’s'?5 conclusion that displacements leading to
cyclic products have less negative activation volumes than
open-chain analogs.

G. Carbanion Reactions (Entries 536-616)

A conceptually simple reaction is rate-controliing proton
transfer, and this is essentially the mechanism in the base-
promoted isomerizations of several substituted cyclohexenes
studied by Steinberg.®? A priori, one expects that A V¥ will be
negative since this is essentially an S\2 reaction at hydrogen;
however, the value might be less negative than usual since the
incipient product is a charge-delocalized allylic anion. The sur-
prising result is that A V¥ is about —20 cm3/mol in most in-
stances. It is known that anions are not very well solvated in
dimethyl sulfoxide (‘‘naked anions'’). These large pressure in-
duced accelerations may be due to that, and to the dissociation
of t-BuOK under pressure; at present we will have to wait for
further results in that medium.

Hamann and Linton'7% have found that different mechanisms
apply to the base-catalyzed D-exchanges of formate and acetate
ions. Formate ion exchanges with first-order kinetics and an
activation volume of —2 cm®/mol, via a transition state best
pictured as

O\ N
S—H
o’

whereas the acetate, with second-order kinetics and an acti-
vation volume of —10 cm3/mol, has at least a substantial path-
way via the carbanion

o) H
-/,'C——C-
o’ H



444 Chemical Reviews, 1978, Vol. 78, No. 4

Jost?7? has examined the kinetics of proton exchange in very
fast processes by means of T-jumps. His p-nitrophenol analog
has a very large positive activation volume for proton donation
to hydroxide, fully in accord with the highly delocalized nature
of the incipient anion.

The proton transfers examined by Caldin?72 are of interest
especially in that extremely large ky/kp ratios (up to 50) strongly
suggest that tunnelling characterizes the process. The indif-
ference of A V¥ to solvent effects contrasts with quite a bit of
variation of AV, and Caldin has argued that this is consistent with
his mechanism; however, the activation volumes for the reverse
reactions are sensitive to pressure, yet tunnelling must char-
acterize them too if microscopic reversibility holds.

In base-catalyzed eliminations Brower 186 has found an answer
for a long-standing puzzle: how to assign the so-called E2 and
E1cB mechanisms (concerted reaction and carbanion inter-
mediacy):

N S oa NS

BY \H X X
)
+ \C=C/

/ N

He reasoned that E2 reactions should have negative activation
volumes because of their resemblance to displacements, and
that E 1cB reactions should have positive A V¥ values because
there should be essentially no volume change in the proton-
transfer preequilibrium step, and a volume increase in the C-X
bond cleavage. His study of several textbook examples bears
him out. Again, we should be mindful of the ever present com-
plication of ion pairing in these organic media; a large change
in A V¥ resulted in one instance from the addition of a crown
ether.

A perplexing case is that of the base-promoted diacetone
alcohol decomposition. There is no doubt in this case about the
fact that proton removal is extremely fast and that the reaction
is E1cB. Brower does indeed find A V¥ to be +6 cm3/mol;
however, Moriyoshi 72 finds an activation volume varying from
-9 to +8 cm¥/mol, depending on temperature and solvent
composition, with lower temperatures and the more aqueous
alcohols favoring the negative end of the spectrum. Further data
would be welcome here.

The fragmentations of 3-bromoangelate'4 ion and of chlo-
roacetylhydrazide'’5 provide us with as convincing a pair of
examples of the power of high-pressure kinetics as can be im-
agined. In the former case, concerted bond cleavages can be
assumed since the activation volume is roughly double that
normally observed in simple decarboxylation;? in the latter case
AVF = —5 cm®/mol, which was a divergence from the expected
value so great that the "‘known'’ mechanism could be scrapped
on that basis alone. Reinvestigation revealed that the slow
step—following ionization of the a-NH group—is internal dis-
placement, and the final products are preceded by a long series
of intermediates. Regarding the difference in AV* for the
base-catalyzed condensations of n- and isobutyraldehyde, this
has been attributed to prior hydration of the carbonyl function
in the case of the latter.7®

The Meerwein-Ponndorf type reduction of diisobutyl ketone
with n-butoxide Is second order in both base and substrate. 78
With that many species congregating in the transition state, the
negative activation volume is reasonable, though its magnitude
could certainly not have been predicted with confidence.

T. Asano and W. J. le Noble

The activation volume of the hydrolysis of esters via base
catalysis is consistent with the formation of a tetrahedral inter-
mediate, which then partitions into acid and ester. The bond
formation is responsible for the negative value. A much more
negative value obtains in the addition of thiophenoxide to mesityl
oxide; this is in accord with the less extensive electrostriction
by the more delocalized thiophenoxide ion. The activation vol-
umes observed by Tiltscher 82 for the cesium phenoxide cata-
lyzed additions are such that no bond formation alone can ac-
count for them, and ion pair separation is part of the activation
process.

The base-promoted hydrolysis of chloroallenes has a positive,
but small activation volume. Since this is a ¢clear-cut case of a
carbene reaction, and since the volumes of the transition states
of formation of the carbene are virtually the same whether one
begins with the chloroallene or the isomeric acetylene, the au-
thors deduced that the carbene must initially be paired with the
leaving anion (eq 20).83 During the reaction the chloroacetylene

CHe CHS
AN NA A
C=C=C: = /C—C=C (20)
cny CH
CI- CIr

rearranges to a small extent to the allene, and this isomerization
was shown to be base promoted (hence via the anion), and to
take place via internal return. Further support for these con-
clusions must await stereochemical proof.184

H. Acid-Catalyzed Reactions (Entries 617-756)

It seems a bit surprising that the acid-catalyzed dehydration
leading to «,(-unsaturated carbonyl compounds is accelerated
by pressure, since the main process is the splitting into two
molecules. it must be assumed that in the transition state the
base removing the proton is quite tightly bound and the leaving
water molecule not yet very loose.

H\CbCH/CHs /o
H/ i\CH—C

In any case, the reverse reaction (the hydration of the olefin) is
also accelerated, and the difference between the two A V¥
values is indeed consistent with the bond cleavage (—5.8 —
(—19.8) = +14 cm3/mol). The activation volumes for addition
of methanol or ammonia to a-double bond are comparable to that
for hydration.

The opening of smal! cyclic ethers can be seen in light of
Whalley’s criterion,® negative activation volumes denoting an
A2 mechanism, and positive values an A1 path and free car-
bonium ion. In every instance reported in Table Ill, A V¥ is neg-
ative.

The acetal formation reactions reported by Imoto'°2 are surely
acid catalyzed, and hence autoionization should be part of the
activation process. Since AV, is quite large and negative in such
media (<—20 cm®/mol), the observed negative values seem
quite small. The reverse reactions (some of which are shown
further below) have in any case been identified as A1 reactions
traversing an alkoxy-stabilized carbonium ion; the main transition
state is probably close to

O—Et Et
/
Fa—cri --------- o\
H H
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An interesting example of the use of AV* as a criterion in
A1-A2 reactions is the hydrolysis of benzoic acid anhydrides.
Koskikallio 92 has found a very sharp change of sign from plus
to minus as a function of solvent composition in aqueous diox-
ane. if little water is present, the mechanism is A1 (A VF=4),
and in more aqueous solutions this changes to A2 (A VF=-),
This conclusion is supported by that of a substituent effect. p-
methoxy leads to A1 over the entire range of solvents, and p-nitro
to A2 in all solutions save those containing virtually no water at
all! In some instances in which the A1 mechanism is slighly fa-
vored, modest pressure may conceivably suffice to bring about
a change, leading to minima in the in k vs. p curves. When no
acid is present, the autoionization again becomes part of the
activation process, and much more negative A V* values result.
The same thing is true of ethyl esters.

A change of sign occurs2% in A V¥ in the acid-catalyzed hy-
drolysis if iodide ion is present. Evidently this anion, rather than
a water molecule, then serves to displace alcohol. The product
is still ethanol, so that ethyl iodide is only an intermediate in the
reaction.

CO—H
_/ /'\,_
The sucrose inversion is, of course, the classic example of an
A1 hydrolysis.’

Osugi and co-workers291-295 have made a thorough study of
the acid-catalyzed benzidine rearrangement. They found that
in most cases two pathways (| and Il in Scheme [) contribute to

SCHEME !

g
e

the reaction, and they were able to measure the pressure effects
on both. It was found that A V¥ is about —10 cm3/mol, and A V¥,
is much less negative. The results are consistent with consid-
erable bond formation in advance of bond breaking in process
I. The less negative value of A V¥, is harder to understand in view

é@
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of the increased electrostriction that characterizes divalent ions.
Simple bond cleavage of the monocation would account for A V=
of the disproportionation. The mechanism of the oxidation to the
azobenzene is not known, but the very large negative activation
volume of —50 cm3/mol will be difficult to explain without the
creation of ionic charges in or prior to the transition state.

The pinacol rearrangement has been dissected in remarkable
detail. It is known that the protonated diol eliminates water via
both hydroxy- and phenyi-assisted paths; in the former case, the
epoxide then formed may undergo C-O fission a second time
to form the same ketone by phenyl participation. Moriyoshi and
Tamura have measured the appropriate volume terms;2%6 their
results may be symbolized as shown in Scheme li. The values
for process | seem reasonable, but it is not clear why transition
states | and Il should be similar in volume—the latter differing
from the former by a bound water molecule. The volume changes
in process Il seem extremely large, and the authors conceded
that large experimental errors may be responsible.

Fujii’s results are reasonably explained in terms of the known
formation of molecular chlorine in that reaction: a displacement
of acetanilide from chlorine by chioride ion. The charge neu-
tralization is responsible for the positive volume change.3¢

The self-catalysis in Hamann's esterification and hydrolysis
should be seen as proceding via autoionization. 98 He noted that
pivalic acid gives no abnormally large effect and warned that it
is not wise to expect all sterically hindered reactions to show
special pressure effects.

|. Miscellaneous Organic Reactions (Entries
757-765)

The very large acceleration in the isomerization of
PhSnCH,CCH has been explained by Brower in terms of ion-pair
formation, a sound suggestion since the reaction is known to be
catalyzed by Lewis acids.2%7

Hamann'®” has studied the transition metal catalyzed dis-
placements of some alkyl bromides. With silver ion, A V¥ be-
comes more negative than usual in SN2 reactions; silver ion
assisted ionization is consistent with this.

R— X+ Agh — R*%.-X7% - -Agt

SCHEME II ’
O+ +OH
H T 17 PhQC—'CPhZ + HQO Ph3C-—CPh
H,0* Cl)+ /7 N\ 18 /119 + H,0
+ /"\ OH
Ph,C—CPh, 2> | Ph,C—CPh, N\
. Ph,G—CPh
|
H OH OH, ‘!
Il l!
-34 Ph,C—CPh

OH, OH
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With mercuric chloride, this effect is much smaller. It is known
that mercury-halogen bonds are more covalent in nature, but
perhaps the reason is not that simple; the mechanisms of these
reactions have not been elucidated, and, in fact, the exact rate
laws are not known.

The reopening of the enol ether—tetracyanoethylene adduct
is of interest in that it is perhaps the only C-C bond cleavage
known so far which is accelerated by pressure.2%8 The activation
volume, in fact, is similar to that in solvolysis, proving the fully
zwitterionic nature of the cycloaddition and the reverse reaction.
In this way it provides an interesting contrast with that of cy-
clopropanes to tetracyanoethylene: that reaction is retarded by
pressure, and CIDNP is further testimony to the radical nature
of that reaction.209

Mention should be made here of several qualitative obser-
vations that have synthetic value or potentially so. It was already
noted that hindered Menshutkin reactions seem subject to
special acceleration by pressure. Beside the examples noted
above, Okamoto has reported the reactions of 2,6,N,N-tetra-
methylaniline?'! and 2,4,6-tri-tert-butyl-N-methylaniline?'? with
simple alkyl iodides under pressure, as well as the reaction of
trityl salts with pyridine.2'® Once again, one should not assume
that all hindered reactions are going to be greatly accelerated
by pressure; thus, Okamoto has also found that the solvolyses
of neopentyl and 1-adamantylcarbinyl tosylates are virtually
unaffected by pressure, with AV¥F close to zero in both
casesl|?'4

Several qualitative studies by Plieninger are also of interest;
thus, he has reported high-pressure studies of the cycioaddition
of carbon disulfide to norbornene?'s and a case of pressure-
improved enantioselectivity in a chiral medium.2'6 The dimeri-
zation of cyclooctatetraene under pressure has been described
by Korte.2'7

Ill. Activation Volume Differences
A. The Data in Tabular Form (Table lll)

It should be noted that AA V¥ in all instances equals the
difference in activation volume between the nth and 1st reactions
given:

AAVF = AVF, = AVF,

In many instances the two reactions have the initial states in
common: AA V¥ is then simply V¥, — V¥, This is of course
not so when a mixture of substrates is made to compete for the

same reagent or intermediate. In a few entries, both types of data

were produced in a single experiment.

B. Competing Radical Reactions (Entries 1-24)

The inhibition of the formation of radical pairs by pressure is
relatively small compared to their further separation, a fact al-
ready alluded to in the preceding section. This becomes espe-
cially clear when the effect of pressure on product distribution
is studied: product formation within the cage is suppressed little
compared to escape product yields. The difference in activation
volume amounts to at least 10 cm3/mol in all known cases. It
is interesting to see that this difference is apparently steeply
solvent dependent: in five instances, AAV* equals 13 £ 1
cm®/mol in cumene, but much larger values obtain in other
solvents. Diffusion is, of course, very dependent on the shapes
of the molecules in the system; nearly spherical molecules have
large activation volumes for self-diffusion, for example. A study
of AA V¥ for a single substrate in a series of solvents would be
valuable to see if a correlation with shape can be found. Small
differences are found if two cage reactions are compared; thus,
pressure has much smaller effects on ratios of recombination
and disproportionation.

Zhulin?22 has observed a systematic effect of pressure on the

T. Asano and W. J. le Noble

competition of substituted toluenes for the N-bromosuccinimide
derived radical. The linear variation with the ¢ constants of the
substituents has a very high correlation constant; the Hammond
postulate correctly predicts the direction of the effect. In many
other instances of competition of aromatic substrates for radicals
one can correctly guess which products will be favored under
pressure by assuming it will be the most crowded or branched
product.

C. Competing Cycloadditions (Entries 25-39)

It was noted in section Il that in many Diels—Alder reactions
capable of secondary orbital interactions, | A V| exceeds |A V|,
and hence that these interactions are supported by that obser-
vation. A caveat was also expressed: very large AV values are
notoriously difficult to measure precisely, and no case has yet
been reported in which a retro-Diels—Alder reaction was ac-
celerated by pressure. The data in Table Il raise a further
question. In those instances in which competing reactions take
place, one presumably with, and the other without secondary
orbital interactions, pressure should favor the former. Sera?25
has reported examples in which cyclopentadiene and acrylic acid
derivatives give both exo- and endo-norbornenes, and in no case
does AA VF exceed 1 cm®/mol; furthermore, in two instances
AAVF has the wrong sign, with the exo product favored by
pressure over the endo stereoisomer.

Stewart’s data22® provide an interesting piece of evidence
for the concertedness of Diels—Alder reactions as compared to
radical [2 + 2] cycloadditions; chloroprene dimerization pro-
vides both types of products, and the latter are suppressed in
yield by the application of pressure. It should be pointed out in
passing that the diradical intermediates can close to six-mem-
bered rings, and these compounds are therefore not necessarily
Diels-Alder products; for the arguments which lead to the as-
signment of mechanism to the cyclohexenes, one should read
Stewart’s papers. The cycloaddition of tetrachlorobenzyne to
norbornadiene is one in which the {2 + 2 + 2] reaction com-
petes with a zwitterionic intermediate; electrostriction then
provides an added incentive for the latter, and competition is
about even.

D. Miscellaneous Organic Reactions (Entries
40-59)

In a symmetrical pinacol, it has been found that pressure fa-
vors the migration of phenyl over that of o-anisyl.234 This has
been ascribed to the need for the migrating group to be desol-
vated.

In the ion-pair reaction (eq 21), a substantial amount of ra-

Cl Cl

. O,
. Ny )

— + H ->—Ph —> ester
T»COPh O/

L O

cemic ester is formed. The racemization occurs in the loose pair
stage, and it depends clearly on the rotation of the cation, or its
circumnavigation by the anion. Evidently these reactions, though
dependent on diffusion, can compete with immediate collapse
under pressure, since that reaction is characterized by loss of
solvation,23%
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Activation and Reaction Volumes in Solution

An extensive investigation of the allylation of phenoxide ions
was aimed at the question of the generality of the proposition
that sterically hindered reactions are enhanced more than un-
hindered ones. The reaction of the parent phenol under pressure
had revealed that the transition state for O-alkylation is more
voluminous than that for ortho alkylation, which in turn is larger
than that for the formation of the para isomer; this had been in-
terpreted in terms of a need for desolvation of the nucleophile
prior to displacement. The same trend is visible in the series of
4-mono-, and 3,5- and 2,6-disubstituted phenols; however, the
special effects one might have expected on steric grounds do
not show up. Thus, while Vo* — Vp*t equals 7.6 cm3/mol in the
parent case, itis 7.5 cm3/mol in the presence of 3,5-diisopropyl
substitution! The other results lead to similar conclusions, and
one can only summarize by saying that the large, special pres-
sure effect in hindered Menshutkin reactions has to date found

TABLE IV. Activation Volumes for Reactions of Inorganic Compounds ?
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no parallel in other chemistry.

The methylation of fluorenone oxime takes place in ion-pair
stages, free ions producing the O-methyl| derivative and ion pairs
the N isomer. As a result one might expect that O-methylation
would be favored under pressure, opposite to the result with the
phenoxides. This was indeed observed.2%7

A comparison of the pressure effects of nitration of benzene
and of substituted benzenes has been carried out.238 Again, no
systematic favoring of the more hindered products was ob-
served. Certain regularities do appear in AAV* as a function
of substituent; these may have the same origin as did Zhulin's
results referred to above.

IV. Activation Volumes of Inorganic Reactions
A. The Data in Tabular Form (Table IV)

No. of AvVH,
No. Reaction Solvent T,°C P, kbars kdata cm3/mol Ref Remarks
1 Ks[Co(ox)s]: xH,0 — racemic solid 23-28 44.4 8 —1.54 239 P = 8 kbars
mixture
2 solid 23-28 46.6 7 -1.78 239 P = 16.1 kbars
3 [Ni{phen)s](ClO4)2+2H,0 — solid 21 42 10 —=1.00 240 P = 10.8 kbars
racemic mixture
4 (—)K3[Cr{ox)s] = (£)-Kz[Cr(ox)s] H,0 15.0 1.4 5 —-16.3 241 [HCI] = 0.05M
5 (+)-K[Crox)s(phen)] — (£)- H,0 25.0 1.4 5 -12.3 241 [HCI] = 0.05 M
K[Cr(ox)z(phen)]
6 (+)-K[Cr(ox)2(bpy)] — (£)- H,0 25.0 1.4 5 —12.0 241 [HCI[ = 0.05M
K[Cr(ox)z(bpy)]
7 (+)-[Cr(ox)(phen);]CIO, — ()- H,0 45.0 2.1 4 -1.5 241 [HCI] = 0.05 M
[Cr(ox)(phen),]CI0,
8 (+)-{Cr(ox)(bpy)]PFs — (£)- H.O 45.0 2.1 4 -1.0 241 [HCI] = 0.05M
[Criox)bpy)2]PFs
9 (=)-[Cr{phen);](CIO4 )z — (£)- H.O 75.0 2.1 4 +3.3 241 [HCI] = 0.05 M
[Cr(phen)s](CIO4)s
10 (—)-[Cr(bpy)s)(CIO4)s — ()- H,0 75.0 2.1 4 +3.4 241 [HCI] = 0.05 M
[Cr(bpy)s](CI04)s
1 trans-Co(en),(OH,)2t — cis- H20 345 1.0 5 +14.3 242 [HCIO4] = 0.05 M
Co(en)z(OH,),%*
12 H20 46.0 0.9 5 +14.2 242 [HCIO4] = 0.05 M
13 H,0 48.0 1.0 5 +14.2 242 [HCIO4] = 0.5 M
14 H,0 45.0 1.4 7 +12.6 242 [HCIOs] = 1M
15 H,0 45.0 1.0 5 +13.7 242 [NaClQs] = 1M
16 H,0 50.5 1.0 5 +13.7 242 [HCIO4] = 1M
17 trans-Cr(ox)z(OHyz),™ ~— cis- H,O-THF 25 2.5 9 -16 243 50-100 wt % H,0
Cr{ox)2(OHz)2~
18 H,0-MeOQH 25 2.5 9 -16 243 50-100 wt % H0
19 H,0 25 2.5 9 -10 243 0.2 M Ca{NO3);
20 H,0 25 2.5 9 -55 243 0.2 MHCIO,
21 B-Coledda)tn* — a-Co(edda)tn* H,0 58.6 3 4 +14° 244 0.2 M carbonate buffer
22 B-Co(edda)ent — a-Co(edda)en™ H,0 83.6 3 4 +20.0° 244 0.2 M carbonate buffer
23 trans-Co(en)z(Se03)0H,* — cis- H.0 15 +7.6 246
Co(en),(Se03)0H,*
24 Co(en)g* 4+ *Co(en)s+ — H0 65 -19.8 246 u=05M(CIOs)
Co(en)s®+ + *Cofen)?*
25 Fe(OH)g2t + *Fe(OHp)e?t Hz0 2 2 -12.2¢ 246
F9(0H2)53+ + 'FS(OH2)52+
26 H;0 2 2 ~0.49 246
27 Cr(OH)?* + Cr(OHp)sOH2t — H,0 25 +4.2 246 u=05M(CIOs)
Cr(OH,)%* + Cr(OHy)sOHt
28 TIOH)st + *TI(OM g3+ — H,0 30 2 4 -13.2 247 4.5 MHCIO,
TIOH2)e® + *TI(OH)g™
29 H,0 30 2.7 7 ~-13.2 247 1.1 M HCIO,
30 TaBrsOMe; + Me,0* — CHClg 13.0 1.8 6 +30.5 248 By 'H NMR
TaBrsOMe,* + Me,0O
31 TaBrsSMe; + *Me,S — CH,Cly 12.5 2.1 [] -12.6 248 By 'H NMR
TaBrsSMey* + MesS
32 Co(NH3)s(DMSO3*-dg) + DMSO — DMSO 45 2 4 +10.0 249
Co(NH3)sDMSO + DMSO-dg
33 Cr(DMSO)g3+ + 6DMSO-dg — DMSO-dg 75 3 6 -11.3 250

Cr(DMSO-dg)e®* + 6DMSO
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TABLE IV (Continued)

No. of AVe,

No. Reaction Solvent T, °C P, kbars k data cm3/mol Ref Remarks
34 Cr(DMF-d7)g®t + 6DMF — DMF 65.1 4 8 —-6.3 251
Cr(DMF)g®t + 6DMF-d;
35 trans-Co(en)o(180H,),2+ — H,0 34.8 3 7 +5.9 252 [HCIO4) = 0.8 M,
trans-Co(en)s(OH)2%* w=2.0m
36 trans-Co(en)a(SeOsH)* OH 2t + H,0 25 +8.0 246
H,O — trans-Co(en),(SeOzH)-
OHy2+ + H,0*
37 Cr(OHy)e®t + Hy0* — Cr(OH,)s- H,0* 45 25 7 -9.3 253 [HCIO,] = 0.1M
*OH,* + Hy0
38 Cr{NHa)s* OHp3* + H,0 — H,0 25 2.1 5 —5.8 254 [HCIO ] = 0.1 M
CY(NH3)5OH23+ + H,0*
39 tr(NHa)s* OH,3* + H,0 — H,0O 70.5 4 6 -3.2 255 [HCI04] = 0.01M
Ir(NH3)s0H,3* + H,0*
40 RA(NH3)4* OH3* + H0 — H,0 35 2.1 5 —41 254 [HCI04] = 0.01 M
Rh(NH3)s0H,%* + H,0*
41 Co(NHg)sNCS2t + H,0 — H,0O 88 2.6 3 —4.0 256 w=0.1M(CIO;™)
Co(NH3)sOHo3T + NCS™
42 Co(NH3)sNOz2+ + H,0 — H,0 25 4.1 18 -6.3 257 AV =~7.2 cm®/mol®
CO(NH3)50H23+ + NO3~
256 [LiCIO4} = 0.1 M
43 Co(NH3)sBr2* + H,0 — H,0 25 4.1 7 -9.2 257 AV = —10.8 cm¥/mol®
CO(NH3)50H23+ + Br—
256 [LICIO4) = 0.1 M
44 H,0 30 2.9 4 +2.5 258 f
45 Co(NH3)sCI2+ + H,0 — H,0 25 4.1 8 -10.6 257 AV =—11.6 cm3/mol®
CO(NH3)5OH23+ + CI—
256 [LiCIO] = 0.1 M
46 H,0 59.8 1.4 4 -7.5 259 [HCIO4] = 0.1M
47 Co(NH3)sSO4* + H,0 — H,0 25 4.1 6 —18.5 257 AV =—19.2 cm3/mole
Co(NH3)s0H,3t + S0,2~ 256 [LiICIOs] = 0.1 M
48 Co(NH3)sN32t + Ho,0 — H,0 75 4.1 10 +16.8 256 [LiICIOs] = 0.1 M
CO(NH3)50H23+ + N3~
49 trans-Co(en),Cl,* + H,0 — H,0 19 2.5 4 +11.6 260 At pH 3.3
Co(en),(OH,)CI2T + CI~™
50 H,0 25 2.5 4 +11.0 260 AtpH 3.3
51 H,0 40 2.5 4 +9.45 260 At pH 3.3
52 H,0 55 2.5 4 +7.87 260 AtpH 3.3
53 Cr(OH2)sNO32t + H,0 — H,O 25 2 5 —-12.7 261 [HCIO4) = 1.1 M
CF)OH2)53+ + NO3~
54 Cr(OH,)s12* + H,0 — Cr(OH,)e®* H,0 25 2.5 7 —5.4¢ 262 AV = —3.3 cm3/mol
+- im HC|04—C'O4_
55 H,0 25 2.5 7 -1.69 262 AV = -3.3 cmé/mol
im HC|04—C|O4_
56 Cr(NH3)sNCS2+ + H,0 — H,0 79.8 1.4 4 —8.6 259 [HCIOg] = 0.1 M
Cr(NH3)s0H,%1 + NCS~
57 Cr(NH3)2(NCS),~ + H,0 — H,0 50 2.1 4 —-2.4 263 [HCI04] = 0.006 M
Cr(NH3)»(NCS);0H; + NCS™
58 Cr(NCS)g®~ + H,0 — H,0O 50 2.1 5 +16 263 [HCIO,4] = 0.006 M
Cr(NCS)s0H,2~ + NCS™
59 Cr(NHg)s12t + H,0 — H,0 25 3.5 7 —-9.4 264 AV = —6.0 cm®/mol
Ce(NH3)s0H%+ + 1~ [NHCIO4] = 0.1m
60 Cr(NH3)sBr2t + H,0 — H,O 25 4 9 —10.2 264 AV = —7.2cm?mol
CT(NH3)50H23+ + Br™ [NH4C|04] =01m
61 Cr(NH3)sCI2+ + H,0 — H20 25 3.1 6 —-10.8 264 AV = —8.4 cm®/mol
Cr(NHg)sOH,3+ + CI™ [NH4CIO4] = 0.1m
62 Fe(phen);2* + 6H,0 — H.0 35 1.4 3 +15.4 265 [HoSO4] = 1M
Fe(OHy)g2* + 3phen
63 Fe(5-NOy-phen);2+ + 6H0 — H20 35 1.7 6 +17.9 265 [HyS04] = 1M
Fe(OHa)s2* + 3(5-NOy-phen)
64 Fe(4,7~Me2—phen)32+ + 6H,0 — H0 35 1.4 5 +11.6 265 [H2SO4l = 1M
Fe(OH,)e2+ + 3(4,7-Me,-phen)
65 PCi42~ + H,y0 — PtCI3(OHz)~ + H,0O 25 1.2 8 -17 266
(olln
66 PH{NH3)Cl3~ + H,0 — H20 26 1.1 9 —14 266
Pt{(NH3)CI»(OH,) + CI™
67 Cr(OH,)g®t + OH™ — H,0 + H,0 -3.8 267
Cr{OH,)s0H2+
68 Co{NH3)sCi2* + OH~ — H20 35 1.5 4 +33.4 268 Carbonate buffer; k
Cof{NHg)sOH2* + CI corrected for p eftect
onD
69 Co(NH3)sS04* + OH™ — H0 15 +19.5 246

CO(NH3)50H2+ + 3042_
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TABLE IV (Continued)
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No. of Av*,
No. Reaction Solvent T, °C P, kbars kdata cm3mol Ref Remarks

70 Co{NH3)sSe03" + OH™ — H,0 25 —17.1 246

CO(NH3)50H2+ + Se032‘
71 Co(NH3)sPO4 + OH™ — H,0 55 +28.9 248
CO(NH3)50H2+ 4+ P05~

72 Pt(dien)Br* + OH™ — Pt(dien)OH™ H,0 25 1.5 8 -18.0/ 269 [OH™] = 0.01M

+Br- 1= 0.2 M (NaClOy)

73 Co(en)x(OHy)2THC,0,~ — H.0 +4.7 246

Cofen)oxt + H
74 cis-Co(en)s(OHy),3t + HyCo04 — H.0 60.0 1.5 +4.8 270 g, [HNO3] =05M,u =
Co(en),C,04% + 2H,0* 2.0 M (NaNQj)
75 cis-Co(en),(OH)OH2t + C,0,2~ — 30 1.6 +4.6 270 h, pH 7.2, Trizma buffer,
Co(en)o(OH)C,04 + H0 u = 0.32 M (NaNO3)
76 Co(en),(OH)C,04 + HY — H,0 50.0 1.4 0 270 i, pH 7.8, Trizma buffer
Co(en),C204" + H,0 u = 0.37 M (NaNO3)
77 Cofen)y(ox)OHyt — Colen)ox™ H20 +3.5 2486 Ring closure
+ H,0
78  Cr(OHo)s3t + ox — Cr(OH).oxt H,0 25 1.5 7 —2.2 271 AtpH2.7,u=1M
+ 2H,0
79 Cr(OH,)s0xt + ox — Hz0 25 2 8 —8.2 271 AtpH2.7, u=1M
CI’(OH2)2(OX)2_ + 2H20
80 Cr(OHy)a(0x)~ + ox — Cr(ox)®~ H.0 25 2 8 -10.0 271 AtpH27, u=1M
+ 2H,0
81 Fedt + NCS™ — FeNCS?* H,O 25 1.4 3 +5 272 P-jump, f
~+6
82 H,0 25 2 5 —-4.9 273 T-jump, & = 0.2m
~+4.4 (NaClQy), AV = +8.9
cm3/mol
83 FeOH2* + NCS™ — Fe(OH)NCSt H,0 25 2 5 +7.1 273 T-jump, 4 = 0.2 m
(NaClOy4)
84 Fe3* + ClI~ — FeCI2* H0 25 2.8 5 —4.5 274 T-jump, cu=15M
(NaClOy,)
85 FeCl2t — Fe3t + CI— H,0 25 2.8 5 —9.2 274 T-jump, cu=15M
(NaClIO,), AV =—486
cm3/mol
86 Fe3* + ClI~ — FeCI2t H,O 25 2.8 5 +6.8 274 T-jump, u = 15M
(NaClOy), d, k
87 FeCl2t — Fe®t + CI™ H.0 25 2.8 5 +2.2 274 T-jump, £ = 1.5 M
(NaClQy), d, !
88  [Fe(CN)s(3,5-Me-py)]®~ + CN™ H,0 25 1.4 5 +20.5 275 4 = 0.5 M (NaClOy)
— [Fe(CN)g]4~ + 3,5-Me,-py

89  [Fe(CN)s(3,5-Me,-py)®~ + pz — H,0 25 1.4 5 +21.2 275 u = 0.5 M (NaClOy)
[Fe(CN)s(p2)]®~ + 3,5-Mex-py

90  [Fe(CN)s(3,5-Mep-py)]3~ + imH H.0 25 1.4 5 +20.3 275 © = 0.5 M (NaClO,)
— [Fe(CN)s(imH)]3~ + 3,5-Me,-py

91 [Fe(CN)s(3-CN-py)]3— + CN™ — H,0 25 1.4 5 +20.6 275 # = 0.5 M(NaClO,)
[Fe{CN)s]*~ + 3-CN-py

92 [Co(NH3)sCI]2+ + OH™ — H,0 35 1.5 4 +33.4 268 Carbonate buffer
[Co(NH3)sOH] 2+ + CI—

93 Co?t + pada — Co(pada)2* H,0 25 2.1 6 +7.2 276 T-jump,

277 u = 0.1M(NaNO3), AV
= +5.8 cm®/mol

94 Glycerol 20 2.8 ) +9.6 278 T-jump

95 Glycerol 43 2.8 6 +7.6 278 T-jump

96  Co(pada)®* — Co?* + pada Glycerol 43 2.8 6 +7.9m 278 T-jump

97  Co?* + NHy — CoNH,2+ H,0 10 1.4 5 +4.8 276 T-jump, k= 0.1 M
(NH4NQ3), AV =-86
cmé/mol

98  Co(gly)* — Co?* + gly H,0 25 2.8 6 +0.3 279 T-jump, = 0.2 M
(NaNO3)

99  Co?* + gly — Co(gly)*t H,0 25 2.8 67 +8 279 AV =+7.3 cm¥mol

100  CBM© + I~ — CBM-| H,0 25 1.4 5 +55 280  T-jump, 4 = 0.2 M (KNO3),
Av = -5.8 cm3/mol
101 CBM-l — CBM + |- H,0 25 1.4 5 +11.5 280 T-jump, # = 0.2 M (KNOj)
102 Ni(tren)?* + pada — Ni(tren)- H20 20 2.7 6 +2.9 281 T-jump, & = 0.3 M
(pada)?* (NaNOQ3)
103 Ni(tren)(pada)?* — Ni(tren)?* + HO 20 2.7 6 +5.2 281 T-jump, © = 0.3 M
pada (NaNO3)
104  Ni(gly)t — Ni2* + gly H,0 25 2.8 6 +8.0 279 P-jump, k. = 0.2 M
(NaNO3)
105 Ni2* + gly — Ni(gly) * H,0 25 2.8 6" +10 279 AV = +2.1 cm3/mot
106 Ni{CO)4 + (EtO)sP — Ni(CO)aP- C;Hqe 0 1.4 5 +8 282

(OEt)s + CO



460 Chemical Reviews, 1978, Vol. 78, No. 4

TABLE IV (Continued)
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No. of AV*,
No. Reaction Solvent T.°C P, kbars k data cm?®/mol Ref Remarks
107 Ni2* + pada — Ni(pada)?* H,0 49 2.1 6 +7.7 276 T-jump
277 u=0.1M(NaNOg), AV
= +0.9 cm3/mol
108 Ni2* + NHz — NiNH32* H.0 30 1.4 7 +6.0 276 T-jump
277 u=0.1M(NH4NO3), AV
= —2.3 cm®/mol
109 Nizt 4+ mu — Nifmu)* H,0 25 1.5 4 +12.2 283 T-jump, u = 0.1M
(NaClOy), AV = +22.6
cmd/mol
110 Ni(mu)* — Ni* + mu H,0 25 1.5 4 —10.4 283 T-jump, u = 0.1M
(NaClOy)
111 Ni(edda) + pada — Ni(edda)(pada) H,0 25 2.7 6 +5.2 281 T-jump, 4 = 0.3 M
(NaN03)
112 Ni(nta)~ + pada — Ni(nta)(pada)™ H,0 25 2.7 6 +6.9 281 T-jump, x = 0.3 M
(NaNQ3)
113 Ni(nta)(pada)~ — Ni(nta)~ + pada H.0 25 2.7 6 +7.0 281 T-jump, 1 = 0.3 M
(NaNQg)
114 Ni(dien)2* + pada — Ni(dien)- H.0 25 2.7 6 +4.2 281 T-jump, £ = 0.3 M
(pada)?*t (NaNOg)
115 Ni(dien)(pada)2* — Ni(dien)?* + H,0 25 27 6 +3.6 281 T-jump, u = 0.3 M
pada (NaNO3)
116 Ni(trien)2* + pada — Ni(trien)- H,0 25 2.7 6 +2.6 281 T-jump, . = 0.3 M
(pada)?t (NaNO3)
117 Ni(trien)(pada)2* — Ni(trien)2* + Hz0 25 2.7 6 +5.9 281 T-jump, © = 0.3 M
pada (NaNO3)
118 Zn(gly)t — 2n2t + gly H20 10 2.8 8 +2.0 279 T-jump, u = 0.2M
{NaNO3)
118 Zn2t + gly — Zn(gly)* H,0 10 2.8 6" +7 279 AV =452 cm¥mol
120 Zn2t + pada > Zn(pada)?* Glycerol 20 2.8 6 +12.2 278 T-jump
121 Zn{pada)?t — 2n?* + pada Glycerol 20 2.8 6 +13.1m 278 T-jump
122 Cu(gly)t — Cu?* + gly H20 25 2.8 ] -1.7 279 T-jump, x = 0.2M
(NaNQ3)
123 Cu?* + gly — Cu(gly)* H,O 25 2.8 6" +12 279 AV = +13.4 cm¥mol
124 Mo(CO)g + PhsP — Mo(CO)sPPh; Me,CHCH,- 103 1.4 5 +10 282
+ CO CMeg
125 Cr(C0)s + PhsP — Cr(CO)sPPh; c-CgH2 124 1.4 5 +15 282
+ CO
126 W(COQ)g + BusP — W(CO)sPBu3 c-CgHy2 120 1.4 5 -10 282
+ CO
127 Cr(CO) + N3~ — Cr(CO)sNCO™ Me,CO 24 1.4 5 0 282
+ Ny
128 Pd(Et4dien)CIt + N3~ — H,0 25 —14.3 284 p
Pd(Et.dien)Ng* + CI~
129 Pd(Etqdien)CI* + I~ — H,0 25 —13.8 284 p
Pd(Et4dien)™ + CI™
130 Pd(Etsdien)Br* + N3~ — H20 25 =114 284 p
Pd{Etsdien)Ngt + Br—
131 Pd(Etdien)Br* + 1= — H,0 25 -12.5 284 p
Pd(Etsdien)* + Br—
132 Pd(Et,dien)I™ 4+ Ng~™ — H.0 25 -10.8 284 p
Pd(Et4dien)Nz* + I-
133 Pd(Etydien)it + Br~ — H20 25 -10.6 284 p
134 Pd(Et4dien)Brt + I~ H.0 40 -10.2 284 p
135 DMSO 40 ~9.2 284 p
136 DMF 40 -7.9 284 p
137 MeOHM 40 -11.7 284 p
138 PtCI2™ + HO — PICI5(OHy) ™ + H0 25 1.2 8 -17 266
cl~
139 Pt(NH3)Cl3~ + H0 — H20 26 1.1 9 —14 266
Pt(NH3)Cl,(OH2) + CI™
140 Pt(dien)Br* + N3~ — Pt(dien)Ns* H,0 25 1.5 8 —16¢ 269 AV =~1.2cmé/mol,
+ Br~ = 0.2 M (NaClQ,)
141 H20 25 1.5 6 —8.59 269 k= 0.2 M (NaClO,)
142 Pt(dien)Br* + py — H.0 25 1.5 8 <0! 269 AV = +23.5 cm3/mol,
Pt(dien)py2* + Br~ u=02M(NaClOy)
143 H.0 25 1.5 6 -7.79 269 u=0.2M(NaClO,)
144 Pt(dien)Brt + OH~ — H,0 25 1.5 8 —18.07 269 [OH~"] =0.01M, u=0.2
Pt(dien)OH* + Br— M (NaCiOy)
145 Pt(dien)Brt + NO,~ — H,0 25 1.5 6 —18¢t 269 AV = +0.9 cm*/mol,
Pt(dien)NO,* + Br~ u = 0.2 M (NaClO,)
146 Hx0 25 1.5 6 —6.49 269 1= 0.2 M (NaClOy)
147 PY(dien)CI* + Nz~ — H,0 25 1.5 6 —17t 269 AV = =27 cm®/mol,

Pt(dien)Ng* + CI™

# = 0.2 M (NaClOy)
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TABLE IV (Continued)

No. of Avr,
No. Reaction Solvent T,°C P, kbars kdata cm3/mol Ret Remarks
148 HO 25 1.5 6 —8.29 269 u = 0.2 M (NaClOy)
149 Pt(dien)It + N3~ — H,0 25 1.5 6 —18! 269 AV =+0.8 cm®/mol,
Pt(dien)Nz* + 1~ u = 0.2 M (NaClO,)
150 H,0 25 1.5 6 —8.29 269 u=0.2M (NaClQy)
151 Pt(dienNz* + I~ — H,0 25 1.5 6 <0! 269 AV =—0.8 cm®/mol,
Pt{dien)l™ + N3~ 1= 0.2 M(NaClOQ,)
152 H,0 25 1.5 6 —12.29 269 u =0.2M (NaClOQy)
153 Pt(dien)N;* + NCS™ — H,O 25 1.5 6 <Qf 269 AV =+11.8 cm3/mol,
Pt(dienNCS™ + N3~ u = 0.2 M (NaClOy,)
154 H.0 25 1.5 6 —7.39 269 u = 0.2 M (NaClQ,4)
155 trans-Pt(PEt3),Cl, + Br— — MeOH 25 1 4 —277 285 [BugNBr] = 0.1M
trans-Pt(PEt3),CiBr + CI~
156 Aq 25 0.5 4 -28! 285 H0 mol%, u = 0.1 M
MeOH (LICIO4)
157 Ag 25 0.5 4 —289 285 Ho0 60 mol%, u = 0.1
MeOH M (LiCIO4)
158 trans-IrC|(CO)PPhg), + Mel — PhMe 25 1 5 —28.2 286
IrCIKCO)(PPhs),Me
159 PhH 25 0.8 4 —-29.8 286
160 CHCI3 25 1 5 —19.2 286
161 PhCl 25 1 6 —23.6 286
162 Me,CO 25 1 5 —20.5 286
163 DMF 25 1 4 —15.2 286
164 trans-IrCI(CO)PPhg); + Hy — DMF 10 1.5 6 —18.0 287
IrCIH,(CO)PPh3),
165 PhCl 10 1.5 6 —19.0 287
166 PhMe 10 1.5 6 —20.4 287
167 Me,Hg + HCI — MeHgCl + CH4 H.0 25.0 1.0 4 -22.0 288 [HCI] = 0.01~0.10M
168 Me,Hg + HBr — MeHgBr + CHy, H,O 25.0 1.0 4 —37 288 [HBr] = 0.01~0.17M
169 Ce(DCTA)™ + Erét — Ce®t + H,0 25.0 1.5 6 —-3.2 289 pH >~ 5.3, u = 0.1 M(KCI)
Er(DCTA)™
170 Eu(DCTA)™ + Erdt — Eudt + Ho0 25.0 1.5 6 -2.2 289 pH =~ 3.9, u = 0.1 M (KCI)
Er(DCTA)~
171 Th(EDTA)™ + Er¥t — Th3+ + H,O 25.0 1.5 6 —4.7 289 pH =~ 3.6, u = 0.1 M(KCI)
Er(DCTA)™
OH—
172 HNF, — NoFy + F~ + H,0 Aq 15 4.1 5 +7s 290 H,0 93%, phosphate
MeOH buffer, pH 7.42
173 HNF, + OAc™ — F~ + other H0O 20 3.2 4 —-17.6 290 Acetate buffer, pH 5.5
products

2 Abbreviations: ox, Co042~; en, HoNCH,CH NH,; tn, HoNCH,CHACHoNH,; dien, HaNCH,CHoNHCH,CHoNH; trien, HoNCHoCHoNHCH,CHaNHCHLCHoNH,; tren,
N(CH2CHzNH,)s; gly, H;NCH,COO~; edda, “OCONHCH,CHNHCOO™; nta, N(CH,COO0™)3;

HN N(CH,CO0"),
o= 0
O QO | T
N N N N(CH,COO"),
phen pada mu DCTA
N\ O_O —\
O NOp Q p N NH
py pz bpy imH

b Corrected for pH change by pressure. © Acid-independent path. 9 Inversely acid-dependent path. © From data published by T. G. Spiro, A. Revesz, and J.
Lee, J. Am. Chem. Soc., 90, 4000 (1968). * Catalyzed by Pb?* (4 X 10™* M) and sodium polyethylenesulfonate (1073 M). 9 For k in the following scheme, obtained
from the overall rates at various oxalic acid concentrations:

H2C20,4 = Co(en)z(OH),3" « HaCo04 « fast
cis-Co(en)y(OH,),t + I S —> Co(en)(OH)C204T — Co(en),C04+
HC204_ = Co(en)g(OH2)23+ . HCQO4_

f For k' in the following scheme, obtained from the overall rates at various oxalate concentrations:

K
Co(en)x(OH)OH,2t + C2042 = Co(en)y(OH)OH,2 - C,042~ Co(en)a(OH)OH,2T - C2042~ — Colen)a(OH)C,04 + H0

"For K’ in the following scheme. The volume change for the preequilibrium is assumed to be +2.3 cm®/mol.

o
Co(en)x(OH)C,04 + HY = Colen)(OH,)C,04% Co(en)a(OH,)C041T — Colen),C04% + H0

/ AV s estimated to be +17.5 cm®/mol from the pressure effect on the equilibrium ([HCIO,4] = 0.2 M], and +8 cm®/mol from dilatometric measurements [HNOs)
= 0.7 M). ¥ The observed activation volume consists of two terms, A Von + AV*_,: Fedt — FeOH2t + H+ (Kgy), FeOH2T + CI™ —>Fe(OH)CI™ (kz). ! The observed
activation volume consists of two terms, AVouc + AV*_z: FeCl2t — FeOHCI* + HT (Konci). Fe(OH)CIT — FeOH2¥ + CI~ (k_,). ™ Calculated by the present
authors assuming Ink = a + bP. " Calculated from the equilibrium constant and the reverse reaction rate. © Cobalamin. P No k; path is observed. 9 Nucleophile
dependent path: rate = k1[complex] + kz[nucleophile] [complex]. ” No k; path is observed. 5 After correction for pH charge by pressure. ! Nucleophile independent
path.
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B. Isomerizations (Entries 1-23)

Schmulbach?3® was the first chemist to study inorganic ra-
cemizations under pressure. He found only very small effects
in the case of tris(oxalato)cobalt(lll), and concluded that no bond
making or breaking was involved. A concerted distortion from
octahedral coordination to a trigonal prism was postulated, and
this conclusion is surely correct. This mechanism (twist about
a single atom) is not known in organic chemistry. Conversion
of a tetrahedral nickel complex into the planar isomer has been
achieved by Ferraro by means of high pressure;?4® a twist
mechanism was postulated.

The racemization of compounds in which an asymmetric
carbon atom is the source of the chirality always requires prior
dissociation to a trivalent species. This mechanism also operates
in many inorganic compounds, and it makes itself known by way
of much larger activation volumes. Both negative and positive
activation volumes are possible. Thus, Stranks argues that ra-
cemization of tris- and bis(oxalato)chromium(lll) complexes takes
place by a dissociative mechanism in which the volume de-
crease is produced by an increase in electrostriction,?4! and so
does cis—trans isomerization according to Kelm,?43 but when
the ligands are all neutral, as in the bisaquobis(ethylenediam-
ine)cobalt(ll) ion, A V¥ is large and positive. These large values
suggest that the radius of the complex ion does not change much
as one of the ligands is ejected. Conversely, the large negative
numbers could be indicative of prior expansion of the first
coordination sphere to seven with the entry of a water molecule,
but it is not easy to see why such a species would racemize
much more easily than the initial state. On the other hand, the
reduction in A V¥ in the calcium nitrate or perchloric acid cat-
alyzed isomerizations is readily understandable in terms of prior
association of the oxalate ligand with another cation.

C. Redox Reactions (Entries 24-29)

in the oxidation of one complex ion by another, the question
arises whether one of the ligands must first be removed (inner-
sphere mechanism) or not (outer sphere). Halpern was the first
chemist to approach this question by means of high-pressure
arguments: A V¥ should be positive if the former mechanism
applies, and he found that this is indeed so in a number of known
inner-sphere reductions of halo- and azidocobalt(lll) complexes
by aquoiron(ll).? One somewhat surprising feature of both the
detailed and preliminary results recorded by Halpern is that they
showed only little or no correlation with total charge: some
formal (+4) transition states are formed with volume decreases
smaller than some (+ 1) analogs. Nevertheless, the argument
has now been strengthened significantly by the finding that
known outer-sphere redox reactions—in which the expected
increase in electrostriction is not complicated by prior disso-
ciation of a ligand—have fairly large negative activation volumes:
among them are the electron exchange between thallous and
thallic ions, between tris(ethylenediamine)cobalt(ll) and -(lIl)
complexes, and hexaaquoiron(ll) and -(1l1); in the latter case both
mechanisms compete, and there is a clear difference in A v
between both.

D. Solvent Exchange (Entries 30-40)

These are surely the simplest substitution reactions of com-
plex ions since the reaction volume is zero and the two solvent
molecules involved in the exchange are equally bound (or free).
As in the earlier groups of reactions, the important question is
between prior association (expansion of the coordination sphere)
and dissociation, with the corresponding activation volumes
negative and positive, respectively.

The tantalum pentabromide adducts studied by Merbach?48
provide a striking example: dimethyl ether exchange, which is
a known example of dissociative exchange, has an activation
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volume of +30 cm3/mol, whereas dimethyl sulfide exchange,
known to be of the associative type, has a AVF of —12.6
cm3/mol. The dimethyl sulfoxide adducts of cobalt(lil) (+10
em?3/mol) and chromium(lil) (—11 cm®/mol) are other such pairs.
This difference carries over into other solvents as well; as in the
isomerization reactions, one observes positive activation vol-
umes with cobalt, negative ones with chromium. Iridium and
rhodium resemble chromium in this respect.

E. Other Substitution Reactions (Entries 41-173)

When the leaving groups and nucleophiles are not the same
but both are neutral molecules, the simple distinction between
associative and dissociative mechanisms on the basis of the sign
of the activation volume still holds, but when either or both are
ions, the results are made more complex by changes in elec-
trostriction.

The pentaamminecobalt(lll) complexes are subject to hy-
drolysis which is accelerated by pressure, yet, in these reactions
a dissociative mechanism has been assigned by Swaddle et
al.25% The reason for the volume decrease is the same as that
advanced to explain the pressure-induced acceleration in organic
reactions: there is an increase in total charges, and the corre-
sponding electrostriction is what is observed. The sequence of
accelerations NCS~™ < NO;~ < Br~ < CI™ « 80,42~ is in good
agreement with this assignment, as is the fact that AVF ~ AV.
Association, and entrance of water in the coordination sphere
of cobalt, would also have produced an increase in rate, but
these increases should not have been a sensitive function of the
leaving group. The slight pressure retardation if lead ion and
polyethylenesulfonate polymer are present is a somewhat
special case that is not closely related to the reactions in
water;258 the azide reaction with its positive activation volume
suggests that the azido ligand leaves as HN; rather than as N5 ™.
The trans-dichiorocobalt(lll) complex hydrolyzes with a positive
activation volume. Before it can be concluded that this is a unique
case of a pressure-retarded ionization process, further infor-
mation is needed, however. Thus, the activation volume was
derived from first-order rate constants, but it was also reported
that these are pH dependent; yet, apparently no corrections were
made for the change in pH with pressure. The pentaaguo-
chromium(lll) complexes are described by prior association with
water, in analogy to the mechanism of water exchange.?62

The very large, positive value of the hexathiocyanatochro-
mium(lll) complex is due to dissociation, and the delocalization
and loss of electrostriction that is expected of a reaction of the
type 36 — 26 + 6. The bisammine analog has a small, negative
value; the authors283 ascribe this to a frontside displacement.
The interpretation of the pressure effect on the hydrolysis rate
of iron{Ill) complexes is straightforward.2%* The platinum com-
plexes show unexpectedly great acceleration in the liberation
of chloride, which Brower286 attributes to association of two
water molecules. i

Tantalizingly large fluctuations occur in the brief list of reac-
tions involving hydroxide ion. These variations bear little relation
to the formal charge type of the reactions. Thus, the reaction with
hexaaquochromium(lll) has a negative activation volume even
though neutralization formally occurs, whereas the phospha-
tocobalt(lll) complex is greatly retarded, even though formally
there is a great increase in total charges. As noted by Swad-
dle, 257 the complex ions should probably not be thought of as
point charges. The phosphate complex, for example, is surely
not a neutral species but rather a zwitterion with three negatively
charged oxygen atoms at one end and pentaamminecobalt(l!l)
at the other. The very large value for chloropentaamminecob-
alt(Ill) has been attributed to proton abstraction from the coor-
dinated ammonia by Kitamura.?68

The reactions involving oxalate ions are difficult to interpret
because of the uncertain state of protonation of both reagents.
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Dissociation is clearly the rule with the nickel through copper
complexes. One trend that seems fairly obvious is that the
heavier metals have evidently a greater ability to accommodate
expansion of the coordination spehre as might be expected;
examples are the more negative AV* values in the series
Cr—Mo-W, the platinum displacements compared to palladium,
and the large, negative values characteristic in the iridium
complexes.

There are very few examples of inorganic reactions under
pressure that do not involve complex ions. One of these is the
hydrolysis of difluoramine, which offers an interesting contrast
with the reaction of the same compound with acetate ion. The
former reaction is retarded by pressure, and this was claimed2°
to be so because of HN-F anion dissociation into fluoride and
fluoronitrene, NF; the latter reaction was thought to be a simple
displacement. These assignments are in agreement with the fact
that the reaction with hydroxide is enormously faster than that
with acetate. It proved possible to capture the supposed inter-
mediate,2°! and subsequent work with HNCI; led to the formation
of an N-Cl adduct as well.2%2 It should also be mentioned here
that Hagen has reported2®® much valuable information regarding
the use of high pressure in inorganic synthesis; the simplicity
of his apparatus renders his approach as the most attractive
route to many of the compounds he describes. Finally, attention
should also be called to work by Adams and Laidler,2°4 who have
deduced activation volumes of diffusion of tertiary ammonium
salts in acetone (approximately +10 cm3/mol) from conduc-
tance data under pressure; the data are shown to be in reason-
able agreement with hole-free volume theory of liquids.

V. Reaction Volumes

A. The Data in Tabular Form (Table V)

It should be noted here that a number of reaction volumes are
given under Remarks in the preceding tables; some but not all
of these data are repeated in Table V.

B. Inorganic Acids: lonization Volumes
(Entries 1-46)

The ionization volume of water shows the temperature and
ionic strength dependence that would be anticipated on the basis
of an assumption that water has a relatively open (ice-like)
structure near 0 °C which is in equilibrium with a denser struc-
ture at higher temperatures. The less dense structure should be
subject to greater electrostriction. A minimum in the ionization
volume is observable at about 32 °C, reminiscent of and perhaps
related to the temperature of maximum density of water. AV,
is reduced by a few cm3/mol if the ionic strength is 0.1; the ions
to be solvated then have to compete with the electrolyte.

The large, negative ionization volume of boric acid is due in
part to the fact that it is not merely a dissociation, but a water
molecule becomes bound in the process. The temperature and
ionic strengtn dependence are similar to those observed in the
ionic dissociation of water itself. The same remarks apply to
carbonic acid except that the temperature range is wider: AV,
equals —88 cm3/mol at 250 °C. No water becomes bound in the
ionization of cacodylic acid, and its ionization volume is more
modest.

Diphosphate ion has a larger A V, again (—25 cm3/mol at 25
°C), but now for a different reason: a dianion is formed, and
according to the Drude-Nernst picture, electrostriction is pro-
portional to the square of the charge. The very modest voiume
decreases characteristic of the acid ionizations of hexaaquo-
chromium and -iron(lil) may have the same origin. They are es-
sentially proton transfers from one hydronium ion to another, and
there is net charge dispersal in the process.
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C. Carboxylic Acids: lonization Volumes (Entries
47-124)

The ionization volume of carboxylic acids is in general about
—14 cm®/mol, but for the first few two members of the series
these volume decreases are significantly smaller, —8 and — 11
cm®/mol, respectively. The same anomaly is visible with oxalic
and malonic acid, and with glycolic acid. The nature of these
deviations is not known at present; any theory to account for it
should explain why the effect of small alkyl groups on the ion-
ization volume does not apply to amines. The explanation need
not concern the anion alone, of course; it should always be re-
membered that when abnormal volume differences are en-
countered, the abnormality is not necessarily due to the species
to the right of the arrow sign.°® If the small, free acid rolecules
have abnormally small partial volume, due, for example, to hy-
dration to ortho acids, to dimerization, or to hydrogen bonding,
the effects would be explained. That these attributes would in-
deed reduce the volume of the intial species may be gleaned
from Table VI; pure oxalic, in fact, is known in the form of a di-
hydrate.

The Drude—Nernst formulation predicts that with dicarboxylic
acids AV, should be larger than AV, and that this difference
should diminish as the distance between the two centers is
raised. The data nicely bear this out, with AAV, = 6-8 cm3/mol
at the lower members in the series, and then dropping off until
it has vanished at adipic acid.

No outstandingly unusual features are encountered with the
hydroxy acids. Glycinium ion is still subject to contraction when
it transfers a proton to water, because even though it becomes
formally neutral, it is in fact a zwitterion with two charges in-
teracting with at least the nearest-neighbor water molecules.
The o-hydroxybenzoic acid®®7 is a bit surprising with a AV, of
—4.6 cm3/mol (for benzoic acid, —10.9 cm3/mol); the internal
H bond might be considered responsible, but an analogous effect
is not discernible with the aliphatic hydroxyacids. Perhaps the
rigidly enforced nature of the H bond in the phenolic benzoate
ion is the origin of this effect.

D. Phenols (Entries 125-159)

Once again the Drude-Nernst equation is helpful in categor-
izing the data. First of all, AV, of phenol itself is more negative
than that of carboxylic acids because, although charge delo-
calization occurs, it is less complete; for the same reason, it is
less negative than water itself. Secondly, the volume diminution
is less pronounced for thiophenol, for which the negative charge
is located on a larger atom. Thirdly, the possibilities of an elec-
tron-withdrawing group either attracting negative charge to itself
by virtue of resonance, or to neighboring carbon atoms in an
inductive way, both serve to reduce A V;. With some minor ex-
ceptions, one finds that the more such groups are present, the
more pronounced the effect is. An increase is, on the other hand,
observed when a neighboring carboxylate center serves to in-
crease charge concentration. We note parenthetically that this
review includes some data also listed in Hamann’s survey? which
were then referred to as unpublished work; the full publication
has meanwhile appeared."

E. Amines (Entries 160-222)

The data given are those of the conjugate acids; to get the data
for the ionization process

NR3 + H,O — HNRz™ + OH™

the AV data given should be subtracted from A V; for water (i.e.,
from —22 cm3/mol at 25 °C).

The data show a small but discernible trend: more highly
substituted ammonium ions deprotonate with smaller volume
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increases. There is at present not a good rationale for this effect.
Once again we see that the volume changes involved in multi-
charged ions are larger, the more so the closer the charges are
together. The imidazolium ion represents once again a case of
a charge delocalized and not efficiently solvated, and hence a
volume decrease occurs upon proton transfer to water. The
2,6-pyridines show no regular trend until tert-butyl substitution
is considered: the discontinuity found there was attributed22 to
the impossibility then arising in the formation of N-H hydrogen
bonds to the solvent. N-tert-Butylacetamide has a large negative
volume change associated with deprotonation;1? in this case
the rationale is that amides have pronounced zwitterionic
character which is lost upon protonation of the nitrogen
atom.

F. lon-Pair Equilibria and Inorganic Reaction
Volumes (Entries 223-333)

In the successive reaction stages:

solid = ionic aggregates = tight ion-pairs
= loose ion-pairs = free ions

electrostriction should increase to the right and pressure should
shift all these equilibria in that direction. However, it is difficult
to say by how much. Thus, solids are notoriously hard to classify
as covalent or ionic, aggregates are undefined as to the size of
the clusters, and ion pairs are structurally not as well defined as
the words intimate, solvent-separated, and ion would suggest.
Add to this a fair degree of experimental difficulty and variety,
and we have the ingredients of much confusion and disagree-
ment.

Millero®2® has determined the volume change involved in the
dissociation of ion pairs of rubidium and thallous nitrate. This was
done by measuring densities of dilute solutions as a function of
concentration, and by comparing the partial volumes with the
estimated partial volumes of the free ions. He explains the dif-
ference between the two salts as possibly due to a contact ion
pair in the thallium case vs. a solvent-separated pair with ru-
bidium.

The very large value for sodium borate was attributed?®? to
the binding of water, by what is apparently really the reaction

H,0 + Na+,HgBOS‘ = Na*t + B(OH),~

in the next several cases of ion-pair dissociation, studied
mostly as a pressure effect on electrical conductance, AV tends
to be —8 to —10 cm3/mol, and the one rather different result of
—25 cm3/mol for CaSO, was ascribed by Millero®2s to tight
ion-pair character in this case; however, there are also some
results by Osugi®?4 showing this salt to be more or less unex-
ceptional.

The copper(ll) malonate and tartrate complexes show large
negative volume changes upon dissociation that require the
assumption of largely covalent character. The effect is some-
what smaller in highly concentrated urea solutions since this
solute is known to break down the structure of water by com-
peting with it in H-bond formation. Among the remaining ob-
servations of ion-pair behavior in water, there are several which
are not easily accounted for. Thus, it is not clear why CeCl2* and
CeQOCEt2+ have contractions of —0.8 and —23.6 cm3/mol,
respectively.

When we turn to nonaqueous solutions, the effects become
larger as the Drude-Nernst equation requires. Particularly in-
teresting in this group is the tight-loose equilibrium of several
ion pairs in ethereal solvents. Szwarc and Claesson336-338 have
found that alkali metal fluorenides are subject to contractions
of 7 to 23 cm3/mol in the loosening process. These species have
UV spectra which are themselves pressure dependent, and
hence their use to evaluate A Vis not without hazards;33® how-
ever, a similar result has been obtained by means of ESR in the

T. Asano and W. J. ie Noble

sodium naphthalene ion pair (—15 cm®/mol in THF at 0 °C).57
A conductance method for some quaternary salts in acetone has
given®40 values of about —15 to —25 cm3/mol.

It should be expected that complete ionization in nonagueous
media should then be characterized by extremely large con-
tractions, and there is evidence that this is 50.%41 Kitamura has
deduced volume decreases of several hundred cm3/mol in al-
coholic media when CoCl, ionizes; this result was obtained from
conductance increases under pressure. Relaxation measure-
ments of solutions of tetra-n-butylammonium picrate in ether
at 25 °C (five measurements, over a 400-bar range) have led
to a result of —125 cm®/mol in that case.

The solubility of several sparingly soluble salts has been ex-
amined as a function of pressure,®*4 and large volume decreases
were found. Corrections were made for the hydrolysis of the
anions. The A V° values were, in fact, in some cases not as large
as listings of ionic partial volumes suggested, and the authors
felt that some of the salts may form a hydrated surface under
pressure, so that the equilibrium equation is accordingly al-
tered.

Dimerization of acids has a negative reaction volume as might
be expected from bond formation processes.3%3 The reaction
presumably involves the formation of several extra hydrogen
bonds; for each such bond, a volume change of —4 cm®/mol is
expected (note, for example, the volume change in the com-
plexation of phenol by p-dioxane).

Charge-transfer complexation has been studied extensively
by Ewald. He finds an average of —7 cm?3/mol, if the donor and
acceptor molecules are themselves neutral. Since this value
applies in nonpolar solvents, we must attribute it primarily to a
change in separation rather than to dipole development; in other
words, there is not much charge transfer! When one of the
members is charged, however, the effect of transfer is ob-
servable; complexation then, in fact, means delocalization, and
the pressure effect is diminished to the vanishing point. When
both members are charged (oppositely), neutralization occurs,
and the reaction volume becomes large and positive.

The reaction volume in pyridine Menshutkin reactions has
been mentioned earlier (in comparison with the activation vol-
umes), or as has the proton transfer from «, p-dinitrotoluene to
sym-tetramethylguanidine.

The hydration of carbonyl functions reduces the volume by
amounts in excess of 10 cm3/mol; clearly, the process does not
diminish the ability of the hydroxy groups to participate in H-
bonding. Interestingly, the two smallest members have sharply
reduced reaction volumes. The same anomaly was observed
in the case of the ionization volumes of carboxylic acids.

The conformational equilibria involving halogenated cyclo-
hexanes and ethanes are all in favor of the more crowded con-
formers by small amounts. There are no instances as yet of
pressure effects on isotopic exchange equilibria, nor are there
likely to be many; atomic loccations in molecutes are virtually
independent of the isotopic mass. Even such substances as H,0
and D,0 have almost identical molar volumes. On the other hand,
there are some examples of small changes in steric effects due
to isotopic substitution; 359 these have been attributed to small
differences in the amplitude of the zero-point vibration. Con-
ceivably there may be small differences in volume in these in-
stances as well.

Osugi®€® and Heidberg3®' have reported pressure effects on
some keto-enol equilibria, by means of UV and NMR, respec-
tively. Generally the values, in agreement with earlier ones (using
more tedious chemical analysis),®%2 are small and positive,
roughly in agreement with parachor-based predictions.

VI, Photochemistry and Related Processes

Mechanistic investigations in photochemistry have become
fashionable in recent years, and some high-pressure work has
been reported as well. There are a number of special experi-
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mental problems in this, however, and the interpretation of ob-
served effects is not always straightforward. We begin this
section therefore with some general remarks.

First of all, while the literature now contains several photo-
chemical ‘‘activation volumes”, these results do not fit the simple
definitions applicable in thermal reactions. The pressure effects
may, in fact, be describable by a single number, but it seems best
to us not to call this the activation volume; perhaps pseudo-
activation volume is suitable.

By definition, the process begins with the molecular absorp-
tion of a photon.363 Since the speed of light exceeds the velocity
of molecules, or even the fastest moving parts of vibrating
molecules by several orders of magnitude, one may assume that
the absorption process does not involve significant nuclear
displacements; the volume should not change during this part
of the reaction (Franck—-Condon principle). This does not mean
that absorption is pressure independent; quite to the contrary,
examples of (usually fairly small) pressure effects on spectra
abound in the literature.36* However, these effects are due to
pressure-induced changes in the solvation of the molecule, and
perhaps to minute distortions; in any case, they are certainly not
due to any volume changes in the absorption process itself. In
any case, any quantitative work which seeks to unravel true
activation processes in the individual steps of a photochemical
reaction must surely include measurements of the effect of
pressure on the quantum yield and energy of absorption, i.e., on
the spectrum. After the absorption, the molecule will assume
its new shape, relax vibrationally, and reequilibrate with sur-
rounding molecules. It will thereafter have a new partial volume;
as yet this quantity is not yet known in even a single case, but
since both its shape and dipole will normally have changed, it
may be more than trivially different from that of the ground
state.

The excited singlet is one of several possible branch points
in the overall process. Thus, it may simply undergo radiationless
decay, by transferring its excess energy into some ground-state
vibrational mode (internal conversion). It is usually not clear what
role surrounding molecules have in this process, and hence what
effect pressure is likely to have on it. Alternatively, the singlet
may fluoresce. Since the simple decay is usually very fast, flu-
orescence (or any other competing process, for that matter) must
be fast also if it is to compete effectively; the time scale is of the
order of 1078 s or so. The fluorescence process, if it is spon-
taneous, is subject to exactly the same considerations as is the
absorption process; i.e., there is no change in volume during
emission, but both intensity and energy (wave length) may be
pressure dependent. After emission, the hot ground state then
quickly reestablishes its initial geometry and surroundings. One
of the complications arising in fluorescence is that it may be (in
part) induced by another molecule, the so-called quencher. Since
the quenching process must be fast, we are dealing with a bi-
molecular reaction which will often be diffusion controlled. Such
reactions are obviously retarded by pressure; the pressure de-
pendence of the rate in such cases should parallel the viscosity
dependence.

Intersystem crossing to the lowest triplet state is another
possible fate of the excited singlet, but the pressure dependence
of this process is difficult to predict. Lastly a chemical reaction
may occur to give new products, almost always in their (hot)
ground states. The pressure effect for these reactions may be
interpretable simply in terms of their volume profiles, with the
excited state serving as the initial state. Since one ordinarily does
not know the absolute rate constant, the best that can be done
is to measure the effect of pressure on the quantum yield, but
¢ is usually a complex function of several rate constants and
hence not readily interpretable in terms of activation volumes.
Absolute rate constants for chemical conversion of excited
states can be determined by means of single photon-counting
techniques, but these have not yet been applied with sufficient
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accuracy to consider adaptation to high-pressure apparatus.

If crossing to the triplet state does occur, after cooling has
progressed to the vibrationally lowest level, the same possibil-
ities of radiationless decay, emission (phosphorescence), energy
transfer to another molecule (sensitization), or chemical reaction
present themselves. They differ from those of the singlet in that
the element of spin inversion necessary for return to the ground
state leaves the triplet a longer lived species; 1 ms or so lifetime
is quite common, and hence slower processes can compete.
This is an important consideration because one of the problems
to consider in studies of pressure effects on photochemical
reactions is that if the reactions are exceedingly fast and hence
the barriers very low, the formalism of the absolute rate theory
may not be applicable. If the reactant excited state can get over
the barrier on the first few tries, so to speak, a condition central
to the derivation of the Eyring equation is not fulfilled. This is not
to say that no pressure effects will occur, or that these effects
will not resemble those observed in slower reactions, but they
cannot be confidently related to differences in partial volume
between reactant and activated complex.

To continue this list of woes, there is a general lack of infor-
mation about elementary photoprocesses that is usually taken
for granted in thermal reactions. For example, it is not known
in general how closely the reaction partners must approach in
quenching or sensitization processes. They seem only modestly
sensitive to steric factors35 and hence very close approach is
not needed, but nothing more quantitative is known. And finally,
there are still some experimental problems to be tackled as well.
The weakness of window materials means that the vessel ap-
ertures are generally small, usually about 5 mm or so. Internal
actinometers cannot be used until their pressure sensitivity has
been determined. Most optical cells that have been used to date
succeed in exposing only a small fraction of the solution to the
light traversing the pressure vessel, so that uncertainties arise
(due to pressure inhibited diffusion) when yields are considered:
diffusion of reactant molecules into the irradiated zone plays a
role, and under pressure, an increasingly adverse one. This factor
alone casts doubts on much of the work reported so far. Clearly,
the high-pressure photochemist has his work cut out for him!
Nevertheless, some beginnings have been made, and the rest
of this section is devoted to a review of these contributions.

An all-quartz cell is now available®%® so that the errors and
uncertainties due to contacts of the solution of interest with
plastic and metal parts or mercury bridges can be avoided. It is
essentially a quartz syringe, with a quartz window seal at each
end. It makes an economic use of the cylindrical space usually
available in high-pressure vessels, and since its length is the only
dimension that varies with pressure, compressibility corrections
are obviated.

Ewald®®7 has studied the fluorescence of anthracene under
pressure, and learned that the quenching by carbon tetrabromide
is inhibited in a way which is just opposite to the pressure-in-
duced increase in solvent viscosity. Variations in the quenching
efficiency with solvent viscosity at atmospheric pressure are
also observed, and the conclusion is clear: fluorescence
quenching is a diffusion-controlied process in this case. The
pressure dependence may therefore be used as a more con-
vincing, if less accessible, method to show that a given process
is diffusion controlled.

Metcalf®*8 reached a similar conciusion on the same grounds
regarding the fluorescence of 9,10-diphenylanthracene and its
quenching by oxygen; on the other hand, quenching by carbon
tetrachloride in this instance was virtually unaffected by pressure,
and this process is evidently not diffusion limited.

A still more complicated situation was analyzed by Weller,36°
Pyrene has a fluorescence band which increases in intensity with
concentration up to a maximum, but with further concentration
increases it gives way to a new band which is clearly due to an
excimer. The excimer emission is inhibited by pressure in such
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a way as to reveal the diffusion control of excimer formation.
When excimer fluorescence of benz[ 1,2]anthracene is exam-
ined, one finds that it increases with pressure at low pressures,
reaches a maximum at 2-3 kbars, and then declines. The authors
interpreted the initial increase as due to equilibrium excimer
formation, which has a reaction volume of —6 cm®/mol asso-
ciated with it, and they assume that at higher pressures diffusion
control begins to limit the rate. It is interesting that the singlet
forms a charge-transfer complex with a volume decrease similar
to that of ordinary ground-state acceptors. Perhaps equally in-
teresting,®70 the effects of pH and of pressure on the fluores-
cence spectrum of acridine in water has revealed that AV, for
excited acridine is —25 cm3/mol, similar to that of ground-state
amines; however, AV, for 3-naphtho! is only —6 cm?®/mol,37"
indicating that this phenol must be highly polarized in the excited
state.

Osugi®?2 studied the photochemistry of anthracene and 9-
methylanthracene in n-hexane. He finds that the photodimeri-
zation is retarded in a way approximately expected for diffusion
control. Tanaka®73 found that the pressure effect on the fluo-
rescence quantum yield of anthracene is remarkably dependent
on substituents: steep increases occur with 8-alkyl groups, but
not with anthracene itself. It was considered that the fluores-
cence rate is unaffected, and that effects are due to changes in
intersystem crossing. The Kyoto group has also reported a
comparison of the pressure effects on the thermal and photo-
dissociations of azobisisobutyronitrile, and found only a slight
difference in pressure effect,374

Other work reported in this area includes work by Neuman,375
who has compared the behavior of diradicals generated ther-
mally and photolytically, a study by Kelm,82 who made use of the
chemiluminescence generated in the decomposition of oxetanes
to follow that reaction, one by Hamann who found that pressure
promotes the photodimerization of methyl 3-methoxy-2-
naphthoate,37¢ and two studies carried out in Stony Brook to
compare cycloadditions carried out photochemically with those
done thermally. The well-known pressure-bestowed advantage
of [4n + 2] cycloadditions becomes that of the 4n analogs in
the photoreactions. Thus, pressure does not favor photosub-
stitution over [2 + 2] cycloaddition in the irradiation of mixtures
of naphthalene and acrylonitrile even though the former reaction
has the volume advantage of an ionic transition state;’7 in a
direct comparison of the allowed and forbidden photocycioad-
ditions, the [4 + 4] cycloaddition of 9-cyanoanthracene to cy-
cloheptatriene was found to be promoted by pressure over the
[4 + 2] mode.378 An intriguing observation by Mataga, a pres-
sure-induced and reversibie formation of a photoproduct of py-
rene in oxygenated alcohol, is as yet unexplained.®7°

The work by Schindewolf on solvated electrons under pres-
sure, and by Hentz et al. on v radiolysis under pressure has
provided us with some additional insights in this area. Schinde-
wolf reports380 that electrons in ammonia (from dissolved sodium
metal) have an optical spectrum quite sensitive to pressure (blue
shift of ~1 A/atm) and temperature (red shift of ~25 A/°C); from
these data he shows that ammoniated electrons have a com-
pressibility and thermal expansion considerably in excess of
those of ammonia itself. The equilibrium constant for the pro-
cess

H2+ KNH,; = NH3+ Kt +e™

at —33 °C under pressure was evaluated from the intensities;
AV was found to be about +63 cm?®/mol. By combining this in-
formation with partial volume data of the other species in the
equation, Schindewolf*8! was able to appraise V.- as 84
cm?3/mol; thus the electron is in a cavity of 3-A radius. Virtually
the same information applies to the spin-compensated electron
pairs in ammonia, studied at higher concentration by ESR.382
Interestingly, the effect of pressure on the optical spectra of
electrons in water and simple alcohols (obtained by y-pulse
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radiolysis techniques) is much less drastic;38% in that medium,
electrons apparently occupy much smaller cavities.

The rates of solvated electron-mediated processes are slow
enough to be measurable, and this has been done now in many
cases under pressure by the groups of Freeman, and of Hentz
and Farhataziz. It has been learned that the reaction

e~ + ROH— RO~ +H

has an activation volume of about —20 cm®/mol, due perhaps
to the collapse of the cavity; for the “slow’’ reaction with aro-
matic hydrocarbons to give the radical anions, AV¥ ~ —6
cm?3/mol. For most other species, reaction is rapid and probably
diffusion controlled; the activation volumes are positive.384 The
reaction:

Fe2t + H — FeH2t
which is probably the first step in
Fe2* 4+ H+ Ht — Fe3t + H,

has an activation volume of —9 cm?3/mol;38% a value of —16.8
cm3/mol applies to386

o= + HOOs~ —5 H + COz2-
The reactions®87
e~ +H,O —H+ OH™
e~ + H0" — H + H,0

have activation volumes of —14 and about 0 cm?3/mol, respec-
tively. All these results have been deduced from the quantum
yields in pulse radiolyses of compressed aqueous solutions.
While most of them rest on certain assumptions (such as values
for V(HY), n(H.0), or i(p), etc), it is clear from the results that V,
is relatively small and the electron cavity in water is tiny com-
pared to that in ammonia. The most recent estimate by Hentz388
is that the radius is about 0.7-1.3 A.

To conclude this section, it is ¢clear that the combination of
irradiative processes and high pressure offers possibilities for
study of both fundamental questions and applications. In the latter
area, such simple experiments as pressure-induced changes
in product distributions and stationary-state compositions have
been reported in only few cases, even though shifts in the di-
rection of more highly branched or crowded products seem both
likely and desirable in many cases. More experience in this area
is certain eventually to be helpful in more fundamental questions
as well.

VIl. Biological and Biochemical Processes

The state of the art in this area is similar to that in the photo-
chemical area: so little is known that it is difficult to interpret the
pressure effects in even the simplest experiments. There are
several reasons for this. The systems of interest are often at
once both aqueous and organic, and little is known about pro-
cesses occurring at the interface. The molecules are large, often
with unknown conformation. The volume changes in many in-
stances seem very large on a molar basis, but in terms of volume
fractions they are small. As with small molecules, volume
changes may have any of several causes, but in biochemistry
and biology, the background information available is usually so
much poorer that it is hard to argue convincingly for any one of
them. We consider here systems of increasing complexity:
relatively small and well-defined molecules, polymeric sub-
stances with regularly reoccurring units, and proteins and en-
zymes.

Micelles have been studied under pressure in several labo-
ratories. When an ionic substance in which one of the ions
carries one or more large hydrocarbon groups is dissolved in
water, the ions may congregate at some concentration to form
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micelles; these are globules in which the hydrocarbon residues
have joined together in such a way as to leave the ionic sites in
peripheral positions. A number of counterions are associated
with the charged sphere, which may contain from 50 to 100 of
the large ions. In hydrocarbon media inverse micelles can
sometimes be observed, but these are of course of little interest
in biology. If we consider large anions, the process may be
represented by:

nA~ + (n— 2Ct =@ Mz~

The concentration at which the formation of micelles begins is
known as the critical micelle concentration (cmc); this can be
determined in several ways, for example, by means of con-
ductivity measurements. The effect of pressure can easily be
determined, giving the volume change for the process in terms
of em3/mol of anions. Dilatometric experiments are of course
also possible.

Several electrolytes have now been studied in this way, and
the general result is that the volume increases substantially in
the process: expansions of 5 to 10 cm3/mol anion are usually
observed. Small variations occur from one case to another; for
example, among n-alkanesulfonates, AV (room temperature)
is +5 cm3/mol at Cs,%8° +8 cm3/mol at C14,%%% 10 cm3/mol at
C12,%%" and 11 cm®/mol at Cy4;3%" with n-alkyltrimethylam-
monium bromides, similar variations hint at larger volume in-
creases with longer chains.®89:392 Various responses of the cmc
to pressures have been noticed; a maximum at some pressure
is not uncommon. 92

Most of the discussion of the volume increase has centered
about the so-called hydrophobic interaction. When a hydrocarbon
moiety is introduced in water, the water structure is locally
perturbed, and the effects on thermodynamic properties are
measurable. Thus, when the partial molal volumes of alcohols
and amines in water are compared with the molar volumes, one
finds that the latter are larger: in other words, a contraction oc-
curs upon dissolution. Small increases furthermore occur at
higher molecular weights. One may consider this the result of
a molecule being transferred from a region of relatively low in-
ternal pressure to a much higher one; in any case, a fairly con-
vincing case can be made for the proposition that micelie for-
mation should have a positive volume contribution from this
phenomenon. The difficulty is that there must be other contri-
butions that are hard to evaluate, so that the overall result and
its interpretation are only deceptively simple. The mere fact that
the sign of AV is right is not sufficient!

Thus, the electrostriction is subject to two effects which are
potentially large. One of these is charge concentration. The
survey of activation and reaction volumes repeatedly reveals
that bringing together like charges causes a decrease in volume,
and creating a spherical surface of more or less uniform charge
density should make a large negative contribution to the volume.
This is offset by association with cations. It is not clear whether
the association is tight or loose, and how the hydration of the
ionic sites changes in the process; these are questions that
cannot now be answered. Nor is the structure of the interior of
the micelles known; thus, the question arises whether it is better
considered a liquid or solid, and whether the chains are extended
or coiled. The volume of melting is quite large for hydrocarbons,
and this contribution alone, in absolute terms, may be compa-
rable to or larger than the observed volume change. The burial
of one or more ionic sites inside the micelle would likewise have
implications for the volume. Thus, even if the simple interpre-
tation is correct and hydrophobic interactions are characterized
by net volume decreases, the case has then been made only for
simple saturated hydrocarbon chains, and extrapolation even
to aromatic rings is hazardous.

A second major question that arises is the effect of confor-
mational change. Even in small molecules such as dimethyl-
formamide, a single bond rotation may have a substantial acti-
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vation volume, as noted above. A related instance in a molecule
of biclogical interest is that of N6, Ne-dimethyladenosine; Li-
demann has studied the effect of pressure on the coalescence
temperature of the methyl proton magnetic resonances; the
activation volume is about +10 cm3/mol.3%3

NMe,

e

RO

HO OH
it is tempting, of course, to ascribe this result, so similar to
that with simple amides, to loss of the dipole as the conformation
reaches the perpendicular stage; however, for the same reason,
loss of the dipole, the primary hydroxy group may lose its favorite
H-bonding partner, the adenine group may change its ability to
stack (see below), and so on. In high molecular weight sub-
stances, the rotation of just a few, or even one bond could
conceivably bring about a fairly drastic change in shape. If such
a change caused the exposure to solvent of parts of the molecule
previously hidden inside, the volume change could be large, and
have either sign; if polar or ionizable groups are exposed, the
volume may decrease, and if hydrocarbon moieties become
shielded, it may increase. In large molecules furthermore, an-
other problem may arise, that of cooperativity, as is demon-

strated by the following example.
Poly-L-proline is known in two helical forms, one containing
cis amide linkages and the other trans. For certain 1-

)

and AV can be measured by the pressure effect on the equi-
librium. This has been done by Rifkind and Applequist;3%4 the
effects observed could only be interpreted by assuming a high
degree of cooperativity (each unit preferring another of like
conformation as its neighbor). At 7 kbars the conversion of the
trans form to the cis is complete. The direction is in agreement
with the known fact that the cis helix is much shorter per unit
proline, but the reason for the volume difference is not known.
The same comment must be made about the helix-coil transi-
tions under pressure; pressure effects have been observed in
both directions (for example, poly-v-benzyl-L-glutamate,?95 and
poly-RNA and -DNA39). Protein denaturation is affected by
pressure in only one way: it is always favored. The effects vary
in magnitude; for ribonuclease A, AV can be as low —5 cm®/
mol;397 for chymotrypsinogen, AV = —40 cm3/mol;3%8 for
metmyoglobin, under certain conditions,3®° the volume decrease
is 100 cm3/mol or more. In all of these cases, the pressure-
induced denaturation is reversible.

A third special effect with molecules or biological interest is
the so-called base stacking; this phenomenon may be caused
by charge transfer, by bridging water H-bonded water molecules,
or as a result of hydrophobic interactions. Lidemann has de-
duced?*° from the pressure effect on the chemical shifts of 9-

o0
|
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methylpurine that self-association has a volume change of —4
cm3/mol, opposite to that expected from hydrophobic interac-
tions. Sound absorption measurements under pressure have
similarly yielded a volume decrease of about 7 cm®/mol for
N8, N®dimethyladenine.*! The self-association of the dyes
rhodamine B and methylene blue is characterized by volume

Et,N & NEt,
COOH
Jee O

Me,N S NMe,

decreases of 10.5 cm3/mol; hydrophobic interactions were
consequently ruled out, and bridging water molecules favored
by the authors?%2 (however, charge concentration may have
contributed).

The pressure-jump technique was used to measure the entire
volume profile of the two-step reaction of bromphenol blue with
B-lactoglobulin B. The profile is perhaps best described by the
phrase that the initial state is the densest state. The expansion
was ascribed9? to hydrophobic interactions, but this is only one
possibility. Rather complex behavior is observed in the com-
plexation of riboflavin binding protein with flavin mononucleotide;
fluorescence was used as the probe in this case. The association
is characterized by a small volume decrease (3 cm®/mol); per-
haps more interesting is the fact that there is a red shift in the
spectrum of the protein alone which was attributed to increased
exposure of the tryptophan to solvent.4%* At very high pressure
the complex dissociates again and the protein is reversibly de-
natured with a characteristic large and negative reaction volume
(=75 cm3/mol). A somewhat similar case is the association of
B-casein, studied by Payens and Heremans*%5 by means of light
scattering. They find that depolymerization occurs at iow pres-
sures (below 1.5 kbars), but above that pressure reassociation
takes place: the low- and high-pressure results clearly involve
different 3-casein molecules. The change was described by the
authors as a conformational one.

Related findings have been reported as pressure effects on
the visible spectrum of metmyoglobin fluoride (attributed to
conformational changes),*%¢ on the complexation of polyadenylic
and polyuridylic acids (inhibition attributed to counterion bind-
ing),*°7 on the rate and equilibrium constants of complexation
of several nucleotides,*%8 on the reaction of adenosine and
adenosine 5'-phosphate with hydroxide and the formation of
double-stranded polyriboadenylic acid,*°® on the unfolding of
ribonuclease,*'° on the equilibration of the two forms of meta-
rhodopsin,*1! on the antibody—-antigen reaction,*'2 and on the
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association of E. coliribosomes.*1?

The formation of chemical bonds would be expected to be
characterized by a volume decrease; as an example, the binding
of methionine to iron in cytochrome ¢ is strongly promoted by
pressure.*1* Yet this is not always the case; both positive and
negative volume changes have been encountered in the binding
of small molecules to the hemo- and myoglobins. Such variations
may be caused by hydration and conformation changes; the
magnitude is often pH dependent.*% Perhaps the most important
results are that oxygen binding to hemo- and myoglobin is re-
tarded, and that of carbon monoxide is accelerated.*' In one
case, the cause of a positive value was identified:*'7 the binding
of carbon monoxide to ferroprotoporphyrin IX is retarded by
pressure because of diffusion control, as was evident from
solvent effects.

The intriguing question of the mechanism of enzyme catalysis
has attracted a fair share of the attention of high-pressure in-
vestigations. Thus, Neuman has measured the rates of hydrolysis
of p-nitrophenyl esters catalyzed by hydroxide ion, by Tris buffer,
and by chymotrypsin. All these reactions are accelerated by
pressure, but no startling differences between the pressure ef-
fects were noted.?'8-420 Other enzyme experiments under
pressure have included dextransucrase,*?! fumarase,*?? gly-
colytic enzymes,*23 lactate dehydrogenase,*?* lysozyme,425
ribonuclease,*?% and liver dehydrogenase;*?” as yet, no real
breakthrough has occurred in any case as a result of these ex-
periments.

Vill. Appendix

In this section we list items that reached our attention after
the preceding sections had been completed.

In view of the increasing use of the diamond cell in the studies
of liquids, it is well to call attention to a paper by Christian,428
which reports that the actual pressure in the liquid sample may
be vastly below the applied pressure, most of the resistance
being taken up by the metal gasket.

Table VI lists a number of recently measured activation vol-
umes.

One of the results that stands out in Table VI is that Kelm
could find no difference in the activation volumes of the hydrogen
and deuterium abstractions of phenols and deuterated phenols
by 2,2-diphenylpicrylhydrazyl. This is not unexpected, since
among stable molecules there are no known examples of sig-
nificant differences in molar volume between substances that
differ only isotopically; however, a difference of no less than 10
cm3/mol was reported by Isaacs for the chioranil oxidations of
a pair of protio- and deuteriotriphenylmethanes. If this result
stands up, it would provide a unique example of a pressure effect
on an isotope effect. It is perhaps one of the strongest hints of
the intervention of tunnelling in a chemical reaction as yet un-
covered.

The table concludes with remarkably clear-cut results on the
mechanism of solvent exchange of a number of niobium and

No. Reaction

-

Me,C(CNIN=NC(CN)Me, —> [Me2C(CN)-N2-C(CN)Me2] cage
2 Me,C(CNIN=NC(CN)Me; + |, — 2Me.C(CN)I + N

4 DPPH + HO —> DPPH~——H + O

No.
P, ofk Av*,
Solvent T,°C kbars data cm3/mol Ref Remarks
PhMe 62.3 4.9 5 +25 429
PhMe 62.3 4.9 5 +6.0 429
ProOH 25 2.5 5 +5 430
PhMe 25 1.5 7 —13.7 431
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TABLE VI (Continued)
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No.
P, ofk Ave,
No. Reaction Solvent T,°C kbars data cm3/mol  Ref Remarks
5  DPPH = Do@—f» — DPPH—D -+ -o@—k PhMe 25 15 7 —127 431
[ DPPH + HO@ ~—> DPPH~—H + -o@ PhMe 25 2.0 9 -—133 431
7  DPPH + DO@ — DPPH—D + -o@ PhMe 25 1.5 7 —131 431
8 DPPH + HO—@— —> DPPH—H + -O—@—— PhMe 25 2.0 8 —13.1 431
9 DPPH + DO‘@— —> DPPH—D + -O—@’ PhMe 25 1.5 7 —-13.2 431
10 DPPH + HO~§©>— —> DPPH—H + 'OA§®— PhMe 25 0.3 4 —13.5 431
Ph Ph
11 DPPH + Ho~§©—Ph — DPPH—H + -o«i@—Ph PhMe 25 1.5 7 —11.4 431
Ph Ph
12 Ph2CNy + PACOOH — Ph,CHOCOPHh + Ny Buy0 26.5 1.1 6 —-13.1 432,
433
13 Ph,CNy + PARCOOD — Ph,CDOCOPH + N, Bu,O 26:5 1 5 ~12.8 432
Ci cl
14 (MezN—@CH + o:%@é‘o MeCN 205 2 11 —255 432
3
Ci Cl
cl ci
— (MeﬂV—@é—C%o o-
3
cl ci
Cl cl
15 (MezN—@‘CD + o=§©§>o MeCN 295 2 11 —358 432
3
¢] Cl
Cl cl
— (MezN@—C*DO o
3
o] cl
16 SnMey + I; — SnMegl + Mel BuzO 29.1 1.1 12 —-50 434
17 Ni(MeOH)g2* + *MeOH — Ni(MeOH)s *MeOH + MeOH MeOH 34 2 +10.9 435 From p
effect
on NMR
18 NbCls-Me 0 + *Me,O — NbClis-*Me 0 + Me,0 CHCl, 2 +28.7 436 “
19 NbCls-MeCN + *MeCN — NbCls-*MeCN + MeCN CHCl3 2 +19.3 436 ‘o
20 NbCls:t-BuCN + * t-BuCN —> NbCls-* t-BuCN + t-BuCN CHCls 2 +15.2 436 o
21 NbCls:(MeO)CIzPO + *(MeO)CI,PO — NbCls:*(MeO)CI,PO + (MeO)CI,PO CHCl, 2 +20.5 436 '
22 NbCls(MeoN)aPS + *(MeaN)sPS — NbCls*(Me;N)sPS + (MeoN):PS CH.Cl, 2 +19.3 436 ‘
23 NbBrs:Me,S + *MesS — NbBrs-*MeoS + Me,S CH.Clz 2 —-12.6 436 B
24 TaC|5-Me20 + *Me,0 — TaC|5"M620 + Me20 CH2C|2 2 +27.8 436 Y
25 TaCls'MeoS + *MeoS — TaCls-*MesS + Me,S CH,Cl, 2 —19.8 436 "
26 TaClsMeoSe + *MeySe — TaCls-*MeySe + Me,Se CH.Cl, 2 —-18.7 436 "
27 TaCls*MeyTe + *Me,Te — TaCls-*Me,Te + Me,Te CH.Cl, 2 -10.7 436 ¢
28  TaBrgMe,Se + *Me,Se — TaBrs-*Me,Se + MesSe CH.Cly 2 -13.6 436 °
29 TaBrs:Me,Te + *Me,Te — TaBrg-*Me,Te + Me,Te CH.Cl2 2 —16.4 436 «
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TABLE VII. Activation Volume Differences
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P, No. of SAV*
No. Reaction Solvent T,°C__ kbars k data cm®/mol  Ref  Remarks
1 Me,C(CNN,Me,C(CN) ﬁMeEC(CN)C(CN)MeZ + N, PhMe 62.3 4.9 5 0 429
2Me,C(CN)I +9.97
ABN primary carbon chlorination Neat 40 5.9 4 0 437
|
2 pentane or hexane + Cl; —E: secondary carbon chlorination —-0.7
ABN—> Me,CHCHMeCH,CI Neat 40 5.9 4 0 438
3 Me.oHOHe, + O, 2 Me,CHCMe,Cl -0.9
4 8w —’ME:OC‘: MeCOMe + Me- PhCI 50 3.9 4 0 439 b
LB, BUOH + PhCMe,CHy ~10.0
5  tBuo- ﬁ‘BN—’lB—E: MeCOMe + Me- PhCI 50 3.9 4 0 439 b
M, #-BUOH + PhCH,: —14.0
6  t-BuO- ﬂBN—iB:OC‘: MeCOMe + Me- PhCI 50 2.0 3 0 439 b
e, | BUOH + c-Hex: ~14.4
7 tBuwO- Ml%: MeCOMe + Me- PRCI 50 2.0 3 0 439 b
Hept, {-BUOH + s-C/H g —15.5
AIBN + (-BuOC!
8  tBuO- —: MeCOMe + Mer PhCI 50 2.0 3 0 439 b
EPN, 1-BuOH + PhCHMe: —12.6
9 t8uor S ’:”2:‘ MeCOMe + Me: PhCI 50 2.0 3 0 439 b
2% -BUOH + Ph,CH: —16.5
10 t-BuO MIBU—_O% MeCOMe + Me- PhCI 50 2.0 3 0 439 b
BN, 1-BuOH + PhCMe, —17.1
OMe
11 CH,—CH—CH=CHOMe + MeOCOGHO 4 og MeOPh 50 5.9 2 0 440
COOMe
OMe
ad —0.9°
COOMe
OMe
12 CH,=CH—CH=CHOMe + EtOCOCHO -'</ o] MeOPh 50 5.9 2 0 440
COOEt
OMe
a-d go -1.12
COOE!
OMe
13 CH,—CH—CH=CHOMe + BuOOCCHO —> drl D MeOPh 50 5.9 2 0 440
CO0BU
OMe
ad go —0.9¢
COOBU
OEt
14 GH,—CH—CH=CHOE! + MeOOCCHO ¥4 oE MeOPh 50 5.9 2 0 440
COOMe
OEt
d/-</ o] =1.1¢
COOMe
OFt
15 GH,=—CH—CH==CHOE! + EtO0CCHO al b MeOPh 50 5.9 2 0 440
COOE
OEt
ad —0.7¢

LA

COOEt
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TABLE VIl (Continued)
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P, No. of fA v
No. Reaction Solvent T,°C kbars k data cm®/mol Ref Remarks
OEt
16 OH,==CH—CH==CHOE! + BUOOCCHO ad MeOPh 50 5.9 2 0 440
COQBu
OEt
ol o —0.72
COOBu
2 Calculated by the authors. ? In the presence of trichloroethylene.
TABLE VIIl. Reaction Volumes
No.of K AV, cm¥/
No. Reaction Solvent T, °C P, kbars data mol? Ref Remarks
1 PbMe + I, — CTC Hexane 25 2.0 6 —7.10 442
2 Hexane 40 2.0 6 —6.20 442
3 Hexane 60 2.0 6 —=5.10 442
4  2Ag + Hg,Cl, — 2Hg H>0 25 10.0 11 -5.4 443 From electromotive force of Ag|AgCIE\H920I2|Hg
+ 2AgCI
5 2Ag + HgoBr, — 2Hg H,0 25 10.0 11 —6.0 443 From electromotive force of AglAgBr \ngBr2|Hg
+ 2AgBr
6  Zn + Hgaly, — Znl, H20 25 10.0 11 +1.62° 444 From electromotive force of Zn|Znly![Hgal2|Hg
+ 2Hg
7 Lit,Br- —Lit+8Br Me,CO 25 5 6 —25 445
8 Et,0+1, = CTC CsHqe 25 3.3 4 —-6.7 446

@ Derived from pressure effect on equilibrium constant. © The reaction volume is negative above 6 kbars.

tantalum complexes. Both dissociative and associative reactions
are observed.

Table VIl lists the most recent activation volume differences.
Perhaps the most worthwhile data there are Zhulin's observa-
tions on the effect of pressure on the competition between the
decomposition of the tert-butoxy radical (to acetone and methy!
radical) and its abstraction of hydrogen from various donors. The
latter reaction has a smaller activation volume; the difference
amounts to about 15 cm?3/mol. In other work, Zhulin reports the
trimerization of acetonitrile at 15 kbars.44?

Finally, Table Vil contains among other data Ishihara’s in-
teresting result that the dissociation of lithium bromide ion pairs
in acetone causes a volume diminution of 25 cm®/mol. Once
again, therefore, caution is clearly necessary in the interpretation
of rate data under pressure if ionic reactions in relatively non-
polar media are under study.
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